Skip to main content
Erschienen in: Journal of Electronic Materials 8/2021

28.05.2021 | Original Research Article

Process Optimization for Selective Area Doping of GaN by Ion Implantation

verfasst von: Mona A. Ebrish, Travis J. Anderson, Alan G. Jacobs, James C. Gallagher, Jennifer K. Hite, Michael A. Mastro, Boris N. Feigelson, Yekan Wang, Michael Liao, Mark Goorsky, Karl D. Hobart

Erschienen in: Journal of Electronic Materials | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In light of the importance of selective area doping in GaN to enable planar process technology, and to avoid the complications from the etch/regrowth process, ion implantation is the recognizable alternative. Annealing to activate dopant species and repair the damage to a crystal poses a challenge for GaN since the material will decompose to Ga + N2 at atmospheric pressure and relevant temperatures. In this research, in situ high- and low-temperature epitaxial and ex situ sputtered AlN caps were examined in different stacking arrangements to study the optimum conditions for Mg ion implantation and activation. Concurrently, a matrix of different implantation doses was also investigated to better understand the dose-dependent activation. Each sample has a unique cap stack and four different implant doses, including an unimplanted reference quadrant. The results show that poorer quality cap films enable nitrogen to leave the crystal during annealing and leave nitrogen vacancies behind. Furthermore, a high dose is needed at the surface to facilitate ohmic contact formation. The results suggest that in situ epitaxial-grown AlN caps are more suitable for GaN activation annealing, and high-temperature thin caps provide the best barrier to prevent crystal disintegration. We reveal a timely strategy for preserving the quality of GaN crystal structure during the electrical activation of the ion-implanted Mg atoms. This work provides valuable information that bridges the gap between device processing and electrical characterization of GaN devices, presenting a clear path towards achieving an electrical activation of implanted Mg while maintaining the integrity of the crystalline structure of GaN.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Chowdhury, B.L. Swenson, and U.K. Mishra, IEEE Electron Device Lett. 29, 543 (2008).CrossRef S. Chowdhury, B.L. Swenson, and U.K. Mishra, IEEE Electron Device Lett. 29, 543 (2008).CrossRef
2.
Zurück zum Zitat R. Yeluri, J. Lu, C.A. Hurni, D.A. Browne, S. Chowdhury, S. Keller, J.S. Speck, and U.K. Mishra, Appl. Phys. Lett. 106, 183502 (2015).CrossRef R. Yeluri, J. Lu, C.A. Hurni, D.A. Browne, S. Chowdhury, S. Keller, J.S. Speck, and U.K. Mishra, Appl. Phys. Lett. 106, 183502 (2015).CrossRef
3.
Zurück zum Zitat S.N. Mohammad, C.R. Eddy, and F. Kub, J. Vac. Sci. Technol. B 24, 178 (2006).CrossRef S.N. Mohammad, C.R. Eddy, and F. Kub, J. Vac. Sci. Technol. B 24, 178 (2006).CrossRef
4.
Zurück zum Zitat J.W. Johnson, B. Lou, F. Ren, D. Palmer, S.J. Pearton, S.S. Park, Y.J. Park, and J.I. Chyi, Solid. State. Electron. 46, 911 (2002).CrossRef J.W. Johnson, B. Lou, F. Ren, D. Palmer, S.J. Pearton, S.S. Park, Y.J. Park, and J.I. Chyi, Solid. State. Electron. 46, 911 (2002).CrossRef
5.
Zurück zum Zitat Y.-T. Shi, F.-F. Ren, W.-Z. Xu, X. Chen, J. Ye, L. Li, D. Zhou, R. Zhang, Y. Zheng, H.H. Tan, C. Jagadish, and H. Lu, Sci. Rep. 9, 8796 (2019).CrossRef Y.-T. Shi, F.-F. Ren, W.-Z. Xu, X. Chen, J. Ye, L. Li, D. Zhou, R. Zhang, Y. Zheng, H.H. Tan, C. Jagadish, and H. Lu, Sci. Rep. 9, 8796 (2019).CrossRef
6.
Zurück zum Zitat J. Unland, B. Onderka, A. Davydov, and R. Schmid-Fetzer, J. Cryst. Growth 256, 33 (2003).CrossRef J. Unland, B. Onderka, A. Davydov, and R. Schmid-Fetzer, J. Cryst. Growth 256, 33 (2003).CrossRef
7.
Zurück zum Zitat M. Kuball, J.M. Hayes, T. Suski, J. Jun, M. Leszczynski, J. Domagala, H.H. Tan, J.S. Williams, and C. Jagadish, J. Appl. Phys. 87, 2736 (2000).CrossRef M. Kuball, J.M. Hayes, T. Suski, J. Jun, M. Leszczynski, J. Domagala, H.H. Tan, J.S. Williams, and C. Jagadish, J. Appl. Phys. 87, 2736 (2000).CrossRef
9.
Zurück zum Zitat G.S. Aluri, M. Gowda, N.A. Mahadik, S.G. Sundaresan, M.V. Rao, J.A. Schreifels, J.A. Freitas, S.B. Qadri, and Y.-L. Tian, J. Appl. Phys. 108, 083103 (2010).CrossRef G.S. Aluri, M. Gowda, N.A. Mahadik, S.G. Sundaresan, M.V. Rao, J.A. Schreifels, J.A. Freitas, S.B. Qadri, and Y.-L. Tian, J. Appl. Phys. 108, 083103 (2010).CrossRef
10.
Zurück zum Zitat B.N. Feigelson, T.J. Anderson, M. Abraham, J.A. Freitas, J.K. Hite, C.R. Eddy, and F.J. Kub, J. Cryst. Growth 350, 21 (2012).CrossRef B.N. Feigelson, T.J. Anderson, M. Abraham, J.A. Freitas, J.K. Hite, C.R. Eddy, and F.J. Kub, J. Cryst. Growth 350, 21 (2012).CrossRef
11.
Zurück zum Zitat A.G. Jacobs, B.N. Feigelson, J.K. Hite, C.A. Gorsak, L.E. Luna, T.J. Anderson, and F.J. Kub, Phys. Status Solidi Appl. Mater. Sci. 1900789, 1 (2019). A.G. Jacobs, B.N. Feigelson, J.K. Hite, C.A. Gorsak, L.E. Luna, T.J. Anderson, and F.J. Kub, Phys. Status Solidi Appl. Mater. Sci. 1900789, 1 (2019).
12.
Zurück zum Zitat A.G. Jacobs, B.N. Feigelson, J.K. Hite, C.A. Gorsak, L.E. Luna, T.J. Anderson, and F.J. Kub, Jpn. J. Appl. Phys. 58, SCCD07 (2019).CrossRef A.G. Jacobs, B.N. Feigelson, J.K. Hite, C.A. Gorsak, L.E. Luna, T.J. Anderson, and F.J. Kub, Jpn. J. Appl. Phys. 58, SCCD07 (2019).CrossRef
13.
Zurück zum Zitat J.D. Greenlee, T.J. Anderson, B.N. Feigelson, J.K. Hite, K.M. Bussmann, C.R. Eddy, K.D. Hobart, and F.J. Kub, Appl. Phys. Express 7, 121003 (2014).CrossRef J.D. Greenlee, T.J. Anderson, B.N. Feigelson, J.K. Hite, K.M. Bussmann, C.R. Eddy, K.D. Hobart, and F.J. Kub, Appl. Phys. Express 7, 121003 (2014).CrossRef
14.
Zurück zum Zitat J.D. Greenlee, B.N. Feigelson, T.J. Anderson, J.K. Hite, K.D. Hobart, and F.J. Kub, ECS J. Solid State Sci. Technol. 4, P382 (2015).CrossRef J.D. Greenlee, B.N. Feigelson, T.J. Anderson, J.K. Hite, K.D. Hobart, and F.J. Kub, ECS J. Solid State Sci. Technol. 4, P382 (2015).CrossRef
15.
Zurück zum Zitat T.J. Anderson, J.C. Gallagher, L.E. Luna, A.D. Koehler, A.G. Jacobs, J. Xie, E. Beam, K.D. Hobart, and B.N. Feigelson, J. Cryst. Growth 499, 35 (2018).CrossRef T.J. Anderson, J.C. Gallagher, L.E. Luna, A.D. Koehler, A.G. Jacobs, J. Xie, E. Beam, K.D. Hobart, and B.N. Feigelson, J. Cryst. Growth 499, 35 (2018).CrossRef
16.
Zurück zum Zitat T.J. Anderson, J.D. Greenlee, B.N. Feigelson, J.K. Hite, K.D. Hobart, and F.J. Kub, IEEE Trans. Semicond. Manuf. 29, 343 (2016).CrossRef T.J. Anderson, J.D. Greenlee, B.N. Feigelson, J.K. Hite, K.D. Hobart, and F.J. Kub, IEEE Trans. Semicond. Manuf. 29, 343 (2016).CrossRef
17.
Zurück zum Zitat J.D. Greenlee, B.N. Feigelson, T.J. Anderson, M.J. Tadjer, J.K. Hite, M.A. Mastro, C.R. Eddy, K.D. Hobart, and F.J. Kub, J. Appl. Phys. 116, 063502 (2014).CrossRef J.D. Greenlee, B.N. Feigelson, T.J. Anderson, M.J. Tadjer, J.K. Hite, M.A. Mastro, C.R. Eddy, K.D. Hobart, and F.J. Kub, J. Appl. Phys. 116, 063502 (2014).CrossRef
18.
Zurück zum Zitat Y. Wang, K. Huynh, M.E. Liao, H.-M. Yu, T. Bai, J. Tweedie, M.H. Breckenridge, R. Collazo, Z. Sitar, M. Bockowski, Y. Liu, and M.S. Goorsky, Phys. Status Solidi 257, 1900705 (2020).CrossRef Y. Wang, K. Huynh, M.E. Liao, H.-M. Yu, T. Bai, J. Tweedie, M.H. Breckenridge, R. Collazo, Z. Sitar, M. Bockowski, Y. Liu, and M.S. Goorsky, Phys. Status Solidi 257, 1900705 (2020).CrossRef
19.
Zurück zum Zitat Y. Wang, T. Bai, C. Li, M.J. Tadjer, T.J. Anderson, J.K. Hite, M.A. Mastro, C.R. Eddy, K.D. Hobart, B.N. Feigelson, and M.S. Goorsky, ECS J. Solid State Sci. Technol. 8, P70 (2019).CrossRef Y. Wang, T. Bai, C. Li, M.J. Tadjer, T.J. Anderson, J.K. Hite, M.A. Mastro, C.R. Eddy, K.D. Hobart, B.N. Feigelson, and M.S. Goorsky, ECS J. Solid State Sci. Technol. 8, P70 (2019).CrossRef
20.
Zurück zum Zitat H. Harima, H. Sakashita, T. Inoue, and S.I. Nakashima, J. Cryst. Growth 189–190, 672 (1998).CrossRef H. Harima, H. Sakashita, T. Inoue, and S.I. Nakashima, J. Cryst. Growth 189–190, 672 (1998).CrossRef
21.
Zurück zum Zitat J.D. Greenlee, T.J. Anderson, B.N. Feigelson, K.D. Hobart, and F.J. Kub, Phys. Status Solidi Appl. Mater. Sci. 212, 2772 (2015).CrossRef J.D. Greenlee, T.J. Anderson, B.N. Feigelson, K.D. Hobart, and F.J. Kub, Phys. Status Solidi Appl. Mater. Sci. 212, 2772 (2015).CrossRef
22.
Zurück zum Zitat J.C. Gallagher, T.J. Anderson, L.E. Luna, A.D. Koehler, J.K. Hite, N.A. Mahadik, K.D. Hobart, and F.J. Kub, J. Cryst. Growth 506, 178 (2019).CrossRef J.C. Gallagher, T.J. Anderson, L.E. Luna, A.D. Koehler, J.K. Hite, N.A. Mahadik, K.D. Hobart, and F.J. Kub, J. Cryst. Growth 506, 178 (2019).CrossRef
23.
24.
Zurück zum Zitat M.A. Reshchikov, M. Vorobiov, D.O. Demchenko, Ü. Özgür, H. Morkoç, A. Lesnik, M.P. Hoffmann, F. Hörich, A. Dadgar, and A. Strittmatter, Phys. Rev. B 98, 125207 (2018).CrossRef M.A. Reshchikov, M. Vorobiov, D.O. Demchenko, Ü. Özgür, H. Morkoç, A. Lesnik, M.P. Hoffmann, F. Hörich, A. Dadgar, and A. Strittmatter, Phys. Rev. B 98, 125207 (2018).CrossRef
25.
26.
Zurück zum Zitat V. Meyers, E. Rocco, T.J. Anderson, J.C. Gallagher, M.A. Ebrish, K. Jones, M. Derenge, M. Shevelev, V. Sklyar, K. Hogan, B. McEwen, and F. Shahedipour-Sandvik, J. Appl. Phys. 128, 085701 (2020).CrossRef V. Meyers, E. Rocco, T.J. Anderson, J.C. Gallagher, M.A. Ebrish, K. Jones, M. Derenge, M. Shevelev, V. Sklyar, K. Hogan, B. McEwen, and F. Shahedipour-Sandvik, J. Appl. Phys. 128, 085701 (2020).CrossRef
27.
Zurück zum Zitat B. J. Baliga, Gallium Nitride And Silicon Carbide Power Devices (2017). B. J. Baliga, Gallium Nitride And Silicon Carbide Power Devices (2017).
Metadaten
Titel
Process Optimization for Selective Area Doping of GaN by Ion Implantation
verfasst von
Mona A. Ebrish
Travis J. Anderson
Alan G. Jacobs
James C. Gallagher
Jennifer K. Hite
Michael A. Mastro
Boris N. Feigelson
Yekan Wang
Michael Liao
Mark Goorsky
Karl D. Hobart
Publikationsdatum
28.05.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 8/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08984-8

Weitere Artikel der Ausgabe 8/2021

Journal of Electronic Materials 8/2021 Zur Ausgabe

Neuer Inhalt