Skip to main content
Erschienen in: Metallurgist 3-4/2022

08.08.2022

Processes of Obtaining Granular Materials from Al–Zn–Mg–Cu Aluminum Alloys Using Ultra-Fast Granular Crystallization

verfasst von: M. V. Zharov

Erschienen in: Metallurgist | Ausgabe 3-4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the results of studies into the process of obtaining granular materials from high-strength aluminum alloys of the Al–Zn–Mg–Cu system by melt centrifugation with ultra-high granular cooling rates. The concept of a “vapor jacket” is introduced to describe a vapor layer appearing between the granular body and the cooling fluid, which impedes heat removal and represents an obstacle for an increase in the crystallization rate due to a smaller thermal conductivity of water vapors. A technology for increasing the granular crystallization rate by constant removal of a vapor layer is proposed. It was established that an increase in the rate of heat removal from crystallized granules and, consequently, in the crystallization rate leads to an increase in the strength characteristics of granular Al–Zn–Mg–Cu aluminum alloys. The described method, which is based on the removal of a vapor layer formed around a granule, seems to be the only feasible solution to increasing further the cooling rate and, consequently, the crystallization rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. I. Kolpashnikov and A. V. Efremov, Granular Materials [in Russian], Metallurgiya, Moscow (1977). A. I. Kolpashnikov and A. V. Efremov, Granular Materials [in Russian], Metallurgiya, Moscow (1977).
2.
Zurück zum Zitat V. I. Dobatkin, Aluminum Alloy Ingots [in Russian], Metallurgizdat, Sverdlovsk (1960). V. I. Dobatkin, Aluminum Alloy Ingots [in Russian], Metallurgizdat, Sverdlovsk (1960).
3.
Zurück zum Zitat V. I. Dobatkin and V. I. Elagin, Granular Aluminum Alloys [in Russian], Metallurgiya, Moscow (1981). V. I. Dobatkin and V. I. Elagin, Granular Aluminum Alloys [in Russian], Metallurgiya, Moscow (1981).
4.
Zurück zum Zitat V. B. Ankudinov and Yu. A. Marukhin, Pat. 2032498 RF, IPC V22F9/06. Method for Producing Spherical Granules [in Russian], No. 92011831, Appl. 12/13/1992, Publ. 04/10/1995. V. B. Ankudinov and Yu. A. Marukhin, Pat. 2032498 RF, IPC V22F9/06. Method for Producing Spherical Granules [in Russian], No. 92011831, Appl. 12/13/1992, Publ. 04/10/1995.
5.
Zurück zum Zitat A. I. Kolpashnikov, A. V. Efremov, and M. B. Silin, I. C. 403445 USSR, IPC В05В31/02. Device for Centrifugal Melt Granulation [in Russian], No. 1789209, Appl. 06/21/1972, Publ. 10/26/1973, Bul. No. 43. A. I. Kolpashnikov, A. V. Efremov, and M. B. Silin, I. C. 403445 USSR, IPC В05В31/02. Device for Centrifugal Melt Granulation [in Russian], No. 1789209, Appl. 06/21/1972, Publ. 10/26/1973, Bul. No. 43.
6.
Zurück zum Zitat L. E. Murr and S. M. Gaytan, “Electron beam melting,” Comprehensive Materials Processing, 10, 135–161 (2014).CrossRef L. E. Murr and S. M. Gaytan, “Electron beam melting,” Comprehensive Materials Processing, 10, 135–161 (2014).CrossRef
7.
Zurück zum Zitat S. Samal, “Thermal plasma technology: The prospective future in material processing,” J. of Сleaner Рroduction, 142, 3131–3150 (2017).CrossRef S. Samal, “Thermal plasma technology: The prospective future in material processing,” J. of Сleaner Рroduction, 142, 3131–3150 (2017).CrossRef
8.
Zurück zum Zitat P. C. Angelo and R. Subramanian, Powder Metallurgy: Science, Technology and Application, PHI Learning Pvt. Ltd., New Delhi (2008). P. C. Angelo and R. Subramanian, Powder Metallurgy: Science, Technology and Application, PHI Learning Pvt. Ltd., New Delhi (2008).
9.
Zurück zum Zitat T. Mohanty, B. Tripathi, T. Mahata, and P. Sinha, “Arc plasma assisted rotating electrode process for the preparation of metal pebbles,” Proc. Intern. Symp. Discharges and Electrical Insulation in Vacuum (ISDEIV’ 2014), 741–744 (2014); DOI: 10.1109/ DEIV.2014.6961789 T. Mohanty, B. Tripathi, T. Mahata, and P. Sinha, “Arc plasma assisted rotating electrode process for the preparation of metal pebbles,” Proc. Intern. Symp. Discharges and Electrical Insulation in Vacuum (ISDEIV’ 2014), 741–744 (2014); DOI: 10.1109/ DEIV.2014.6961789
10.
Zurück zum Zitat J. Karlsson, A. Snis, H. Engqvist, and J. Lausmaa, “Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions,” J. of Materials Processing Technology, 213(12), 2109–2118 (2013).CrossRef J. Karlsson, A. Snis, H. Engqvist, and J. Lausmaa, “Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions,” J. of Materials Processing Technology, 213(12), 2109–2118 (2013).CrossRef
11.
Zurück zum Zitat H. Zhu, H. Tong, F. Yang, and C. Cheng, “Plasma-assisted preparation and characterization of spherical stainless steel powders,” J. of Materials Processing Technology, 252, 559–566 (2018).CrossRef H. Zhu, H. Tong, F. Yang, and C. Cheng, “Plasma-assisted preparation and characterization of spherical stainless steel powders,” J. of Materials Processing Technology, 252, 559–566 (2018).CrossRef
12.
Zurück zum Zitat Zh. A. Sentyurina, Preparation of Spherical Powders from Alloys Based on NiAl Nickel Aluminide for Additive Technologies [in Russian], Diss. Cand. Sci. (Engineering), MISIS, Moscow (2016). Zh. A. Sentyurina, Preparation of Spherical Powders from Alloys Based on NiAl Nickel Aluminide for Additive Technologies [in Russian], Diss. Cand. Sci. (Engineering), MISIS, Moscow (2016).
13.
Zurück zum Zitat M. Entezarian, F. Allaire, P. Tsantrizos, and R. A. Drew, “Plasma atomization: A new process for the production of fine, spherical powders,” The J. of the Minerals, Metals & Materials Society, 48(6), 53–55 (1996).CrossRef M. Entezarian, F. Allaire, P. Tsantrizos, and R. A. Drew, “Plasma atomization: A new process for the production of fine, spherical powders,” The J. of the Minerals, Metals & Materials Society, 48(6), 53–55 (1996).CrossRef
14.
Zurück zum Zitat V. Bojarevics, A. Roy, and K. Pericleous, “Numerical model of electrode induction melting for gas atomization,” Intern. J. for Computation and Mathematics in Electrical and Electronic Engineering, 30(5), 1455–1466 (2011). V. Bojarevics, A. Roy, and K. Pericleous, “Numerical model of electrode induction melting for gas atomization,” Intern. J. for Computation and Mathematics in Electrical and Electronic Engineering, 30(5), 1455–1466 (2011).
16.
Zurück zum Zitat Y. Xia, L. Khezzar, M. Alshehhi, and Y. Hardalupas, “Droplet size and velocity characteristics of water-air impinging jet atomizer,” Intern. J. Multiphase of Flow, 94, 31–43 (2017).CrossRef Y. Xia, L. Khezzar, M. Alshehhi, and Y. Hardalupas, “Droplet size and velocity characteristics of water-air impinging jet atomizer,” Intern. J. Multiphase of Flow, 94, 31–43 (2017).CrossRef
17.
Zurück zum Zitat A. I. Volkov and I. M. Zharskii, Big Chemical Reference Book [in Russian], Sovremennaya shkola, Minsk (2005). A. I. Volkov and I. M. Zharskii, Big Chemical Reference Book [in Russian], Sovremennaya shkola, Minsk (2005).
18.
Zurück zum Zitat A. P. Skuratov A. A. P’yanykh, “Calculation study of the cooling rate of aluminum melt droplets in the aqueous medium,” Nauchnye Problemy Transporta Sibiri i Dal’nego Vostoka [in Russian], No. 1, 233–235 (2009). A. P. Skuratov A. A. P’yanykh, “Calculation study of the cooling rate of aluminum melt droplets in the aqueous medium,” Nauchnye Problemy Transporta Sibiri i Dal’nego Vostoka [in Russian], No. 1, 233–235 (2009).
19.
Zurück zum Zitat A. P. Skuratov and A. A. P’yanykh, “Heat exchange during the granulation of lead-containing aluminum alloys in an aqueous medium,” Teplofizika i Aerodinamika [in Russian], 19, No. 2, 155–162 (2012). A. P. Skuratov and A. A. P’yanykh, “Heat exchange during the granulation of lead-containing aluminum alloys in an aqueous medium,” Teplofizika i Aerodinamika [in Russian], 19, No. 2, 155–162 (2012).
20.
Zurück zum Zitat B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, London, England, 157–162 (1972). B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, London, England, 157–162 (1972).
21.
Zurück zum Zitat M. B. Silin and M. V. Zharov, Pat. 2117556 RF, IPC V22F9/10. Method of Producing Metal Granules [in Russian], No. 97116862, Appl. 09/24/1997, Publ. 08/20/1998. M. B. Silin and M. V. Zharov, Pat. 2117556 RF, IPC V22F9/10. Method of Producing Metal Granules [in Russian], No. 97116862, Appl. 09/24/1997, Publ. 08/20/1998.
22.
Zurück zum Zitat State Standard GOST 4784–2019. Aluminum and Deformable Aluminum Alloys. Grades [in Russian], Standartinform, Moscow (2019). State Standard GOST 4784–2019. Aluminum and Deformable Aluminum Alloys. Grades [in Russian], Standartinform, Moscow (2019).
23.
Zurück zum Zitat V. Yu. Konkevich, T. I. Lebedeva, and S. G. Bochvar, Pat. 2467830 RF, IPC V22F3/14. Method of Producing Blanks from Fast-Crystallized Aluminum Alloys [in Russian], No. 2011136572, Appl. 02/05/2011, Publ. 11/27/2012, Bull. 33. V. Yu. Konkevich, T. I. Lebedeva, and S. G. Bochvar, Pat. 2467830 RF, IPC V22F3/14. Method of Producing Blanks from Fast-Crystallized Aluminum Alloys [in Russian], No. 2011136572, Appl. 02/05/2011, Publ. 11/27/2012, Bull. 33.
24.
Zurück zum Zitat State Standard GOST 1497-84 (ISO 6892–84). Metals. Tensile Test Methods [in Russian], Standartinform, Moscow (2008). State Standard GOST 1497-84 (ISO 6892–84). Metals. Tensile Test Methods [in Russian], Standartinform, Moscow (2008).
25.
Zurück zum Zitat V. V. Teleshov, “A fundamental pattern of changes in the structure during the crystallization of aluminum alloys at various cooling rates,” Tekhnologiya Legkikh Splavov [in Russian], No. 2, 13–18 (2015). V. V. Teleshov, “A fundamental pattern of changes in the structure during the crystallization of aluminum alloys at various cooling rates,” Tekhnologiya Legkikh Splavov [in Russian], No. 2, 13–18 (2015).
26.
Zurück zum Zitat G. I. Eskin, “A new pattern of metal material crystallization (Scientific discovery of VILS),” Tekhnologiya Legkikh Splavov [in Russian], No. 1, 7–10 (2010). G. I. Eskin, “A new pattern of metal material crystallization (Scientific discovery of VILS),” Tekhnologiya Legkikh Splavov [in Russian], No. 1, 7–10 (2010).
27.
Zurück zum Zitat V. I. Dobatkin, G. I. Eskin, and S. I. Borovikova, “On the formation of ingot subdendritic structure during the ultrasonic treatment of the melt in the process of crystallization,” Tekhnologiya Legkikh Splavov [in Russian], No. 6, 9–17 (1971). V. I. Dobatkin, G. I. Eskin, and S. I. Borovikova, “On the formation of ingot subdendritic structure during the ultrasonic treatment of the melt in the process of crystallization,” Tekhnologiya Legkikh Splavov [in Russian], No. 6, 9–17 (1971).
28.
Zurück zum Zitat Forging and Stamping. Ref. In 4 Vol. Vol. 1. Materials and Heating. Equipment. Forging [in Russian], Ed. E. I. Semenov, Mashinostroeniye, Moscow (1985). Forging and Stamping. Ref. In 4 Vol. Vol. 1. Materials and Heating. Equipment. Forging [in Russian], Ed. E. I. Semenov, Mashinostroeniye, Moscow (1985).
29.
Zurück zum Zitat Industrial Aluminum Alloys [in Russian], Eds. F. I. Kvasov and I. N. Fridlyander, Metallurgiya, Moscow (1972). Industrial Aluminum Alloys [in Russian], Eds. F. I. Kvasov and I. N. Fridlyander, Metallurgiya, Moscow (1972).
30.
Zurück zum Zitat E. V. Galkin and M. V. Zharov, “The prospective technology of production of metal materials grains with an extra high rate of solidification,” IOP Conf. Series: Materials Science and Engineering. 17th Int. School-Conf. “New Materials: Advanced Technologies” NMAT’2019 (Moscow, 05–08.11, 2019), 1005(2020), IOP Publishing, 012020 (2020); DOI: https://doi.org/10.1088/1757-899X/1005/1/012020. E. V. Galkin and M. V. Zharov, “The prospective technology of production of metal materials grains with an extra high rate of solidification,” IOP Conf. Series: Materials Science and Engineering. 17th Int. School-Conf. “New Materials: Advanced Technologies” NMAT’2019 (Moscow, 05–08.11, 2019), 1005(2020), IOP Publishing, 012020 (2020); DOI: https://​doi.​org/​10.​1088/​1757-899X/​1005/​1/​012020.
31.
Zurück zum Zitat M. V. Zharov, “The study of the properties of Al–Cu–Mg granulated materials molded from granules obtained by centrifugation technology at ultra-high cooling rates,” Tekhnologiya Mashinostroeniya [in Russian], No. 04(226), 5–9 (2021). M. V. Zharov, “The study of the properties of Al–Cu–Mg granulated materials molded from granules obtained by centrifugation technology at ultra-high cooling rates,” Tekhnologiya Mashinostroeniya [in Russian], No. 04(226), 5–9 (2021).
32.
Zurück zum Zitat V. I. Belokopytov, “Development of the technology for stamping forgings from pre-compacted aluminum alloy granules,” Vestn. Magnitogorskogo Gos. Tekhn. Un-ta im. G. I. Nosova [in Russian], 14, No. 3, 25–31 (2016). V. I. Belokopytov, “Development of the technology for stamping forgings from pre-compacted aluminum alloy granules,” Vestn. Magnitogorskogo Gos. Tekhn. Un-ta im. G. I. Nosova [in Russian], 14, No. 3, 25–31 (2016).
Metadaten
Titel
Processes of Obtaining Granular Materials from Al–Zn–Mg–Cu Aluminum Alloys Using Ultra-Fast Granular Crystallization
verfasst von
M. V. Zharov
Publikationsdatum
08.08.2022
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 3-4/2022
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01327-w

Weitere Artikel der Ausgabe 3-4/2022

Metallurgist 3-4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.