Skip to main content
Erschienen in: Journal of Materials Science 16/2014

01.08.2014

Processing and sintering of yttrium-doped tungsten oxide nanopowders to tungsten-based composites

verfasst von: Mazher Ahmed Yar, Sverker Wahlberg, Mohammad Omar Abuelnaga, Mats Johnsson, Mamoun Muhammed

Erschienen in: Journal of Materials Science | Ausgabe 16/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Innovative chemical methods are capable of fabricating nanoscale tungsten oxide compounds doped with various rare-earth elements with high purity and homogeneity, which can be processed under hydrogen into nanostructured oxide-dispersed tungsten composite powders having several potential applications. However, hydrogen reduction of doped tungsten oxide compounds is rather complex, affecting the morphology and composition of the final powder. In this study, we have investigated the reduction of tungstic acid in the presence of Y and we provide the experimental evidence that Y2O3 can be separated from Y-doped tungstic acid via hydrogen reduction to produce Y2O3-W powders. The processed powders were further consolidated by spark plasma sintering at different temperatures and holding times at 75 MPa pressure and characterized. The optimized SPS conditions suggest sintering at 1400 °C for 3 min holding time to achieve higher density composites with an optimum finer grain size (3 µm) and a hardness value up to 420 H V. Major grain growth takes place at temperatures above 1300 °C during sintering. From the density values obtained, it is recommend to apply higher pressure before 900 °C to obtain maximum density. Oxides inclusions present in the matrix were identified as Y2O3·3WO3 and Y2O3·WO3 during high resolution microscopic investigations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lassner E, Schubert W-D (1999) Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds, 1st edn. Kluwer Academic, New YorkCrossRef Lassner E, Schubert W-D (1999) Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds, 1st edn. Kluwer Academic, New YorkCrossRef
2.
Zurück zum Zitat Kitsunai Y, Kurishita H, Kayano H, Hiraoka Y, Igarashi T, Takida T (1999) Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC. J Nucl Mater 271–272:423–428CrossRef Kitsunai Y, Kurishita H, Kayano H, Hiraoka Y, Igarashi T, Takida T (1999) Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC. J Nucl Mater 271–272:423–428CrossRef
3.
Zurück zum Zitat Faleschini M, Kreuzer H, Kiener D, Pippan R (2007) Fracture toughness investigations of tungsten alloys and SPD tungsten alloys. J Nucl Mater 367–370:800–805CrossRef Faleschini M, Kreuzer H, Kiener D, Pippan R (2007) Fracture toughness investigations of tungsten alloys and SPD tungsten alloys. J Nucl Mater 367–370:800–805CrossRef
4.
Zurück zum Zitat Zhang Y, Ganeev AV, Wang JT, Liu JQ, Alexandrov IV (2009) Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity. Mater Sci Eng A 503:37–40CrossRef Zhang Y, Ganeev AV, Wang JT, Liu JQ, Alexandrov IV (2009) Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity. Mater Sci Eng A 503:37–40CrossRef
5.
Zurück zum Zitat Kurishita H, Matsuso S, Arakawa H, Sakamoto T, Kobayashi S, Nakai K, Takida T, Kato M, Kawai M, Yoshida N (2010) Development of re-crystallized W–1.1%TiC with enhanced room-temperature ductility and radiation performance. J Nucl Mater 398:87–92CrossRef Kurishita H, Matsuso S, Arakawa H, Sakamoto T, Kobayashi S, Nakai K, Takida T, Kato M, Kawai M, Yoshida N (2010) Development of re-crystallized W–1.1%TiC with enhanced room-temperature ductility and radiation performance. J Nucl Mater 398:87–92CrossRef
6.
Zurück zum Zitat Yoo SH, Sudarshan TS, Sethuram K, Subhash G, Dowding RJ (1999) Dynamic compression behavior of tungsten powders consolidated by plasma pressure compaction. Powder Metall 42(2):181–182CrossRef Yoo SH, Sudarshan TS, Sethuram K, Subhash G, Dowding RJ (1999) Dynamic compression behavior of tungsten powders consolidated by plasma pressure compaction. Powder Metall 42(2):181–182CrossRef
7.
Zurück zum Zitat Chen W, Kang Z, Ding B (2005) Nanostructured W-La2O3 electrode materials with high content La2O3 doping. Mater Lett 59:1138–1141CrossRef Chen W, Kang Z, Ding B (2005) Nanostructured W-La2O3 electrode materials with high content La2O3 doping. Mater Lett 59:1138–1141CrossRef
8.
Zurück zum Zitat Xi X, Nie Z, Wang W, Yang J, Hao S, Guo Y, Zuo T (2005) Study on preparation and emission properties of nano-composite W-La2O3 material. Appl Surf Sci 251:134–138CrossRef Xi X, Nie Z, Wang W, Yang J, Hao S, Guo Y, Zuo T (2005) Study on preparation and emission properties of nano-composite W-La2O3 material. Appl Surf Sci 251:134–138CrossRef
9.
Zurück zum Zitat Oda E, Ameyama K, Yamaguchi S (2006) Fabrication of nano grain tungsten compact by mechanical milling process and its high temperature properties. Mater Sci Forum 503–504:573–578CrossRef Oda E, Ameyama K, Yamaguchi S (2006) Fabrication of nano grain tungsten compact by mechanical milling process and its high temperature properties. Mater Sci Forum 503–504:573–578CrossRef
10.
Zurück zum Zitat Kurishita H, Matsuso S, Arakawa H, Hirai T, Linke J, Kawai M, Yoshida N (2009) Development of nanostructured W and Mo materials. Adv Mater Res 59:18–30CrossRef Kurishita H, Matsuso S, Arakawa H, Hirai T, Linke J, Kawai M, Yoshida N (2009) Development of nanostructured W and Mo materials. Adv Mater Res 59:18–30CrossRef
11.
Zurück zum Zitat Norajitra P, Boccaccini LV, Diegele E et al (2004) Development of a helium-cooled divertor concept: design-related requirements on materials and fabrication technology. J Nucl Mater 329–333:1594–1598CrossRef Norajitra P, Boccaccini LV, Diegele E et al (2004) Development of a helium-cooled divertor concept: design-related requirements on materials and fabrication technology. J Nucl Mater 329–333:1594–1598CrossRef
12.
Zurück zum Zitat Baluc N (2006) Materials for fusion power reactors. Plasma Phys Controlled Fusion 48:B165–B177CrossRef Baluc N (2006) Materials for fusion power reactors. Plasma Phys Controlled Fusion 48:B165–B177CrossRef
13.
Zurück zum Zitat Cottrell GA (2006) A survey of plasma facing materials for fusion power plants. Mater Sci Technol 22:869–880CrossRef Cottrell GA (2006) A survey of plasma facing materials for fusion power plants. Mater Sci Technol 22:869–880CrossRef
14.
Zurück zum Zitat Norajitra P, Boccaccini LV, Gervash A et al (2007) Development of a helium-cooled divertor: material choice and technological studies. J Nucl Mater 367–370:1416–1421CrossRef Norajitra P, Boccaccini LV, Gervash A et al (2007) Development of a helium-cooled divertor: material choice and technological studies. J Nucl Mater 367–370:1416–1421CrossRef
15.
Zurück zum Zitat Wurster S, Pippan R (2009) Nanostructured metals under irradiation. Scr Mater 60:1083–1087CrossRef Wurster S, Pippan R (2009) Nanostructured metals under irradiation. Scr Mater 60:1083–1087CrossRef
16.
Zurück zum Zitat Nita N, Schaeublin R, Victoria M (2004) Impact of irradiation on the microstructure of nanocrystalline materials. J Nucl Mater 329–333:953–957CrossRef Nita N, Schaeublin R, Victoria M (2004) Impact of irradiation on the microstructure of nanocrystalline materials. J Nucl Mater 329–333:953–957CrossRef
17.
Zurück zum Zitat Chimi Y, Iwase A, Ishikawa N, Kobiyama M, Inami T, Okuda S (2001) Accumulation and recovery of defects in ion-irradiated nanocrystalline gold. J Nucl Mater 297:355–357CrossRef Chimi Y, Iwase A, Ishikawa N, Kobiyama M, Inami T, Okuda S (2001) Accumulation and recovery of defects in ion-irradiated nanocrystalline gold. J Nucl Mater 297:355–357CrossRef
18.
Zurück zum Zitat Rose M, Balogh AG, Hahn H (1997) Instability of irradiation induced defects in nanostructured materials. Nucl Instrum Methods Phys Res B 127–128:119–122CrossRef Rose M, Balogh AG, Hahn H (1997) Instability of irradiation induced defects in nanostructured materials. Nucl Instrum Methods Phys Res B 127–128:119–122CrossRef
19.
Zurück zum Zitat Shen TD, Feng S, Tang M, Valdez JA, Wang Y, Sickafus KE (2007) Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl Phys Lett 90(26):263115CrossRef Shen TD, Feng S, Tang M, Valdez JA, Wang Y, Sickafus KE (2007) Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl Phys Lett 90(26):263115CrossRef
21.
Zurück zum Zitat Avettand-Fenoel MN, Taillard R, Dhers J, Foct J (2003) Effect of ball milling parameters on the microstructure of W-Y powders and sintered samples. Int J Refract Met Hard Mater 21:205–213CrossRef Avettand-Fenoel MN, Taillard R, Dhers J, Foct J (2003) Effect of ball milling parameters on the microstructure of W-Y powders and sintered samples. Int J Refract Met Hard Mater 21:205–213CrossRef
22.
Zurück zum Zitat Malewar R, Kumar KS, Murty BS, Sarma B, Pabi SK (2007) On sinterability of nanostructured W produced by high-energy ball milling. J Mater Res 22(5):1200–1206CrossRef Malewar R, Kumar KS, Murty BS, Sarma B, Pabi SK (2007) On sinterability of nanostructured W produced by high-energy ball milling. J Mater Res 22(5):1200–1206CrossRef
23.
Zurück zum Zitat Sarkar R, Ghosal P, Premkumar M, Singh AK, Muraleedharan K, Chakraborti A, Bagchi TP, Sarma B (2008) Characterisation and sintering studies of mechanically milled nano tungsten powder. Powder Metall 51(2):166–170CrossRef Sarkar R, Ghosal P, Premkumar M, Singh AK, Muraleedharan K, Chakraborti A, Bagchi TP, Sarma B (2008) Characterisation and sintering studies of mechanically milled nano tungsten powder. Powder Metall 51(2):166–170CrossRef
24.
Zurück zum Zitat Veleva L, Oksiuta Z, Vogt U, Baluc N (2009) Sintering and characterization of W-Y and W–Y2O3 materials. Fusion Eng Des 84:1920–1924CrossRef Veleva L, Oksiuta Z, Vogt U, Baluc N (2009) Sintering and characterization of W-Y and W–Y2O3 materials. Fusion Eng Des 84:1920–1924CrossRef
25.
Zurück zum Zitat Zhang Y, Fang Z, Muhammed M, Rao KV, Skumryev V, Medelius H, Costa JL (1989) The synthesis of superconducting bismuth compounds via oxalate coprecipitation. Phys C 157:108–114CrossRef Zhang Y, Fang Z, Muhammed M, Rao KV, Skumryev V, Medelius H, Costa JL (1989) The synthesis of superconducting bismuth compounds via oxalate coprecipitation. Phys C 157:108–114CrossRef
26.
Zurück zum Zitat Wang L, Zhang Y, Muhammed M (1995) Synthesis of nanophase oxalate precursors of YBaCuO superconductor by coprecipitation in microemulsions. J Mater Chem 5(2):309–314CrossRef Wang L, Zhang Y, Muhammed M (1995) Synthesis of nanophase oxalate precursors of YBaCuO superconductor by coprecipitation in microemulsions. J Mater Chem 5(2):309–314CrossRef
27.
Zurück zum Zitat Xi X, Nie Z, Yang J, Fu X, Wang W, Zuo T (2005) Preparation and characterization of Ce–W composite nanopowder. Mater Sci Eng A 394:360–365CrossRef Xi X, Nie Z, Yang J, Fu X, Wang W, Zuo T (2005) Preparation and characterization of Ce–W composite nanopowder. Mater Sci Eng A 394:360–365CrossRef
28.
Zurück zum Zitat Ryu T, Hwang KS, Choi YJ, Sohn HY (2009) The sintering behavior of nanosized tungsten powder prepared by a plasma process. Int J Refract Met Hard Mater 27:701–704CrossRef Ryu T, Hwang KS, Choi YJ, Sohn HY (2009) The sintering behavior of nanosized tungsten powder prepared by a plasma process. Int J Refract Met Hard Mater 27:701–704CrossRef
29.
Zurück zum Zitat Wahlberg S, Grenthe I, Muhammed M (1997) Nanostructured hard material composites by molecular engineering 1. Synthesis from soluble tungstate salts. Nanostruct Mater 9:105–108CrossRef Wahlberg S, Grenthe I, Muhammed M (1997) Nanostructured hard material composites by molecular engineering 1. Synthesis from soluble tungstate salts. Nanostruct Mater 9:105–108CrossRef
30.
Zurück zum Zitat Muhammed M, Wahlberg S, Grenthe I (1995) Method of preparing powders for hard materials. Swedish Pat. SE9402081 Muhammed M, Wahlberg S, Grenthe I (1995) Method of preparing powders for hard materials. Swedish Pat. SE9402081
31.
Zurück zum Zitat Zhang Z, Wahlberg S, Wang M, Muhammed M (1999) Processing of nanostructured WC-Co powders from precursor obtained by co-precipitation. Nanostruct Mater 12:163–166CrossRef Zhang Z, Wahlberg S, Wang M, Muhammed M (1999) Processing of nanostructured WC-Co powders from precursor obtained by co-precipitation. Nanostruct Mater 12:163–166CrossRef
32.
Zurück zum Zitat Zhang Z, Zhang Y, Muhammed M (2002) The reduction of cobalt doped ammonium paratungstate to nanostructured W-Co powder. Int J Refract Met Hard Mater 20:227–233CrossRef Zhang Z, Zhang Y, Muhammed M (2002) The reduction of cobalt doped ammonium paratungstate to nanostructured W-Co powder. Int J Refract Met Hard Mater 20:227–233CrossRef
33.
Zurück zum Zitat Zhang Z, Muhammed M (2003) Thermochemical decomposition of cobalt doped ammonium paratungstate precursor. Thermochim Acta 400:235–245CrossRef Zhang Z, Muhammed M (2003) Thermochemical decomposition of cobalt doped ammonium paratungstate precursor. Thermochim Acta 400:235–245CrossRef
34.
Zurück zum Zitat Yar MA, Wahlberg S, Bergqvist H, Salem HG, Johnsson M, Muhammed M (2011) Chemically produced nanostructured ODS–lanthanum oxide–tungsten composites sintered by spark plasma. J Nucl Mater 408:129–135CrossRef Yar MA, Wahlberg S, Bergqvist H, Salem HG, Johnsson M, Muhammed M (2011) Chemically produced nanostructured ODS–lanthanum oxide–tungsten composites sintered by spark plasma. J Nucl Mater 408:129–135CrossRef
35.
Zurück zum Zitat Yar MA, Wahlberg S, Bergqvist H, Salem HG, Johnsson M, Muhammed M (2011) Spark plasma sintering of tungsten–yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization. J Nucl Mater 412:227–232CrossRef Yar MA, Wahlberg S, Bergqvist H, Salem HG, Johnsson M, Muhammed M (2011) Spark plasma sintering of tungsten–yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization. J Nucl Mater 412:227–232CrossRef
36.
Zurück zum Zitat Wahlberg S, Yar MA, Abuelnaga MO, Salem HG, Johnsson M, Muhammed M (2012) Fabrication of nanostructured W-Y2O3 materials by chemical methods. J Mater Chem 22:12622–12628CrossRef Wahlberg S, Yar MA, Abuelnaga MO, Salem HG, Johnsson M, Muhammed M (2012) Fabrication of nanostructured W-Y2O3 materials by chemical methods. J Mater Chem 22:12622–12628CrossRef
37.
Zurück zum Zitat Borchardt HJ (1963) Yttrium-tungsten oxides. Inorg Chem 2(1):170–173CrossRef Borchardt HJ (1963) Yttrium-tungsten oxides. Inorg Chem 2(1):170–173CrossRef
38.
Zurück zum Zitat Tan J, Zhou Z, Zhong M, Zhu X, Lei M, Liu W, Ge C (2011) Annealing behaviour and transient high-heat loading performance of different grade finegrained tungsten. Phys Scr 145:014055CrossRef Tan J, Zhou Z, Zhong M, Zhu X, Lei M, Liu W, Ge C (2011) Annealing behaviour and transient high-heat loading performance of different grade finegrained tungsten. Phys Scr 145:014055CrossRef
39.
Zurück zum Zitat Fang ZZ, Wang H (2008) Densification and grain growth during sintering of nanosized particles. Int Mater Rev 53(6):326–352CrossRef Fang ZZ, Wang H (2008) Densification and grain growth during sintering of nanosized particles. Int Mater Rev 53(6):326–352CrossRef
40.
Zurück zum Zitat Viswanathan V, Laha T, Balani K, Agarwal A, Seal S (2006) Challenges and advances in nanocomposite processing techniques. Mater Sci Eng R 54:121–285CrossRef Viswanathan V, Laha T, Balani K, Agarwal A, Seal S (2006) Challenges and advances in nanocomposite processing techniques. Mater Sci Eng R 54:121–285CrossRef
41.
Zurück zum Zitat Zhou Z, Pintsuk G, Jochen Linke, Hirai T, Rödig M, Ma Y, Ge C (2010) Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure. Fusion Eng Des 85:115–121CrossRef Zhou Z, Pintsuk G, Jochen Linke, Hirai T, Rödig M, Ma Y, Ge C (2010) Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure. Fusion Eng Des 85:115–121CrossRef
42.
Zurück zum Zitat Ma Y, Zhou Z, Tan J, Li M (2011) Fabrication of ultra-fine grain tungsten by combining spark plasma sintering with resistance sintering under ultra high pressure. Rare Met Mater Eng 40(1):0004–0008CrossRef Ma Y, Zhou Z, Tan J, Li M (2011) Fabrication of ultra-fine grain tungsten by combining spark plasma sintering with resistance sintering under ultra high pressure. Rare Met Mater Eng 40(1):0004–0008CrossRef
43.
Zurück zum Zitat Xie ZM, Liu R, Fang QF, Zhou Y, Wang XP, Liu CS (2014) Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten. J Nucl Mater 444:175–180CrossRef Xie ZM, Liu R, Fang QF, Zhou Y, Wang XP, Liu CS (2014) Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten. J Nucl Mater 444:175–180CrossRef
44.
Zurück zum Zitat Mcwilliams B, Zavaliangos A, Cho KC, Dowding RJ (2006) The modelling of electric-current-assisted sintering to produce bulk nanocrystalline tungsten. J Miner Met Mater Soc 58(4):67–71CrossRef Mcwilliams B, Zavaliangos A, Cho KC, Dowding RJ (2006) The modelling of electric-current-assisted sintering to produce bulk nanocrystalline tungsten. J Miner Met Mater Soc 58(4):67–71CrossRef
45.
Zurück zum Zitat Maizza G, Grasso S, Sakka Y, Noda T, Ohashi O (2007) Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder. Sci Technol Adv Mater 8:644–654CrossRef Maizza G, Grasso S, Sakka Y, Noda T, Ohashi O (2007) Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder. Sci Technol Adv Mater 8:644–654CrossRef
46.
Zurück zum Zitat Haubner R, Schubert WD, Hellmer H, Lassner E, Lux B (1983) Mechanism of technical reduction of tungsten: part 1. Literature review. J Refract Met Hard Mater 2:108–115 Haubner R, Schubert WD, Hellmer H, Lassner E, Lux B (1983) Mechanism of technical reduction of tungsten: part 1. Literature review. J Refract Met Hard Mater 2:108–115
47.
Zurück zum Zitat Haubner R, Schubert WD, Hellmer H, Lassner E, Lux B (1983) Mechanism of technical reduction of tungsten: part 2. Hydrogen reduction of tungsten blue oxide to tungsten powder. J Refract Met Hard Mater 2:156–163 Haubner R, Schubert WD, Hellmer H, Lassner E, Lux B (1983) Mechanism of technical reduction of tungsten: part 2. Hydrogen reduction of tungsten blue oxide to tungsten powder. J Refract Met Hard Mater 2:156–163
48.
Zurück zum Zitat Schubert WD (1990) Kinetics of hydrogen reduction of tungsten oxides. J Refract Met Hard Mater 4:178–191 Schubert WD (1990) Kinetics of hydrogen reduction of tungsten oxides. J Refract Met Hard Mater 4:178–191
49.
Zurück zum Zitat Millner T (1974) Story of beryllium containing additives in large crystalline metallic tungsten. Acta Chim 82(1):1–9 Millner T (1974) Story of beryllium containing additives in large crystalline metallic tungsten. Acta Chim 82(1):1–9
50.
Zurück zum Zitat Huang J, Xu J, Li H, Luo H, Yu X, Li Y (2011) Determining the structure of tetragonal Y2WO6 and the site occupation of Eu3+ dopant. J Solid State Chem 184:843–847CrossRef Huang J, Xu J, Li H, Luo H, Yu X, Li Y (2011) Determining the structure of tetragonal Y2WO6 and the site occupation of Eu3+ dopant. J Solid State Chem 184:843–847CrossRef
51.
Zurück zum Zitat Wang J, Zhang ZJ, Zhao JT, Chen HH, Yang XX, Tao Y, Huang Y (2010) Luminescent metastable Y2WO6:Ln3+ (Ln = Eu, Er, Sm, and Dy) microspheres with controllable morphology via self-assembly. J Mater Chem 20:10894–10900CrossRef Wang J, Zhang ZJ, Zhao JT, Chen HH, Yang XX, Tao Y, Huang Y (2010) Luminescent metastable Y2WO6:Ln3+ (Ln = Eu, Er, Sm, and Dy) microspheres with controllable morphology via self-assembly. J Mater Chem 20:10894–10900CrossRef
Metadaten
Titel
Processing and sintering of yttrium-doped tungsten oxide nanopowders to tungsten-based composites
verfasst von
Mazher Ahmed Yar
Sverker Wahlberg
Mohammad Omar Abuelnaga
Mats Johnsson
Mamoun Muhammed
Publikationsdatum
01.08.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8289-x

Weitere Artikel der Ausgabe 16/2014

Journal of Materials Science 16/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.