Skip to main content

2024 | OriginalPaper | Buchkapitel

13. Processing of Magnesium Alloys by Mechanical Alloying

verfasst von : Kumar Debajyoti Jena, Peng Cao

Erschienen in: Mechanically Alloyed Novel Materials

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter overviews the mechanical alloying (MA) process applied to produce magnesium (Mg) alloys, often called MA-Mg alloys. It discusses the influence of MA on the microstructures and mechanical properties of Mg alloys. The chapter also highlights recent advancements over the past 5 years, emphasising potential applications of MA-Mg alloys.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Dobrzański, L.A., Totten, G.E., Bamberger, M.: The importance of magnesium and its alloys in modern technology and methods of shaping their structure and properties. In: Dobrzanski, L.A., Bamberger, M., Totten, G.E. (eds.) Magnesium and its Alloys, pp. 1–28. CRC Press (2019). https://doi.org/10.1201/9781351045476-1 Dobrzański, L.A., Totten, G.E., Bamberger, M.: The importance of magnesium and its alloys in modern technology and methods of shaping their structure and properties. In: Dobrzanski, L.A., Bamberger, M., Totten, G.E. (eds.) Magnesium and its Alloys, pp. 1–28. CRC Press (2019). https://​doi.​org/​10.​1201/​9781351045476-1
3.
Zurück zum Zitat Luthringer, B.J.C., Feyerabend, F., Willumeit-Römer, R.: Magnesium-based implants: a mini-review. Magnes. Res. 27, 142–154 (2014)PubMedCrossRef Luthringer, B.J.C., Feyerabend, F., Willumeit-Römer, R.: Magnesium-based implants: a mini-review. Magnes. Res. 27, 142–154 (2014)PubMedCrossRef
6.
Zurück zum Zitat Polmear, I.J.: Magnesium alloys and applications. Mater. Sci. Technol. 10, 1–16 (1994)CrossRef Polmear, I.J.: Magnesium alloys and applications. Mater. Sci. Technol. 10, 1–16 (1994)CrossRef
7.
Zurück zum Zitat Holywell, G.C.: Magnesium: the first quarter millennium. JOM 57, 26–33 (2005)CrossRef Holywell, G.C.: Magnesium: the first quarter millennium. JOM 57, 26–33 (2005)CrossRef
8.
Zurück zum Zitat Aghion, E., Bronfín, B., Von Buch, F., Schumann, S., Friedrich, H.: Newly developed magnesium alloys for powertrain applications. JOM 55, 30–33 (2003)CrossRef Aghion, E., Bronfín, B., Von Buch, F., Schumann, S., Friedrich, H.: Newly developed magnesium alloys for powertrain applications. JOM 55, 30–33 (2003)CrossRef
9.
Zurück zum Zitat Baril, E., Labelle, P., Pekguleryuz, M.: Elevated temperature Mg–Al–Sr: creep resistance, mechanical properties, and microstructure. JOM 55, 34–39 (2003)CrossRef Baril, E., Labelle, P., Pekguleryuz, M.: Elevated temperature Mg–Al–Sr: creep resistance, mechanical properties, and microstructure. JOM 55, 34–39 (2003)CrossRef
10.
Zurück zum Zitat Pekguleryuz, M.O., Kaya, A.A.: Creep resistant magnesium alloys for powertrain applications. Adv. Eng. Mater. 5, 866–878 (2003)CrossRef Pekguleryuz, M.O., Kaya, A.A.: Creep resistant magnesium alloys for powertrain applications. Adv. Eng. Mater. 5, 866–878 (2003)CrossRef
11.
Zurück zum Zitat Friedrich, H., Schumann, S.: Research for a “new age of magnesium” in the automotive industry. J. Mater. Process. Technol. 117, 276–281 (2001)CrossRef Friedrich, H., Schumann, S.: Research for a “new age of magnesium” in the automotive industry. J. Mater. Process. Technol. 117, 276–281 (2001)CrossRef
12.
Zurück zum Zitat Kuo, J.-L., Sugiyama, S., Hsiang, S.-H., Yanagimoto, J.: Investigating the characteristics of AZ61 magnesium alloy on the hot and semi-solid compression test. Int. J. Adv. Manuf. Technol. 29, 670–677 (2006)CrossRef Kuo, J.-L., Sugiyama, S., Hsiang, S.-H., Yanagimoto, J.: Investigating the characteristics of AZ61 magnesium alloy on the hot and semi-solid compression test. Int. J. Adv. Manuf. Technol. 29, 670–677 (2006)CrossRef
14.
Zurück zum Zitat Pidgeon, L.M.: New methods for the production of magnesium. Trans. Can. Inst. Min. Met 47, 16–18 (1944) Pidgeon, L.M.: New methods for the production of magnesium. Trans. Can. Inst. Min. Met 47, 16–18 (1944)
17.
Zurück zum Zitat Hou, L., et al.: In vitro and in vivo studies on biodegradable magnesium alloy. Prog. Nat. Sci. Mater. Int. 24, 466–471 (2014)CrossRef Hou, L., et al.: In vitro and in vivo studies on biodegradable magnesium alloy. Prog. Nat. Sci. Mater. Int. 24, 466–471 (2014)CrossRef
18.
Zurück zum Zitat Xin, Y., Hu, T., Chu, P.K.: In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater. 7, 1452–1459 (2011)PubMedCrossRef Xin, Y., Hu, T., Chu, P.K.: In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater. 7, 1452–1459 (2011)PubMedCrossRef
19.
Zurück zum Zitat Witte, F.: The history of biodegradable magnesium implants: a review☆. Acta Biomater. 6, 1680–1692 (2010)PubMedCrossRef Witte, F.: The history of biodegradable magnesium implants: a review☆. Acta Biomater. 6, 1680–1692 (2010)PubMedCrossRef
20.
Zurück zum Zitat Gu, X.N., et al.: The effect of tensile and fluid shear stress on the in vitro degradation of magnesium alloy for stent applications. Bioact. Mater. 3, 448–454 (2018)PubMedCentralPubMed Gu, X.N., et al.: The effect of tensile and fluid shear stress on the in vitro degradation of magnesium alloy for stent applications. Bioact. Mater. 3, 448–454 (2018)PubMedCentralPubMed
21.
Zurück zum Zitat Panigrahi, S.K., et al.: Transition of deformation behavior in an ultrafine grained magnesium alloy. Mater. Sci. Eng. A 549, 123–127 (2012)CrossRef Panigrahi, S.K., et al.: Transition of deformation behavior in an ultrafine grained magnesium alloy. Mater. Sci. Eng. A 549, 123–127 (2012)CrossRef
22.
Zurück zum Zitat Chen, W.Z., Wang, X., Wang, E.D., Liu, Z.Y., Hu, L.X.: Texture dependence of uniform elongation for a magnesium alloy. Scr. Mater. 67, 858–861 (2012)CrossRef Chen, W.Z., Wang, X., Wang, E.D., Liu, Z.Y., Hu, L.X.: Texture dependence of uniform elongation for a magnesium alloy. Scr. Mater. 67, 858–861 (2012)CrossRef
23.
Zurück zum Zitat Le, Q., Jia, W., Ning, F.: Heat transfer analysis of magnesium alloy plate during transport process. J. Magnes. Alloy. 7, 291–296 (2019)CrossRef Le, Q., Jia, W., Ning, F.: Heat transfer analysis of magnesium alloy plate during transport process. J. Magnes. Alloy. 7, 291–296 (2019)CrossRef
24.
Zurück zum Zitat Liu, C., et al.: Biodegradable Mg–Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Sci. Rep. 6, 27374 (2016)PubMedCentralPubMedCrossRef Liu, C., et al.: Biodegradable Mg–Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Sci. Rep. 6, 27374 (2016)PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Ali, M., Hussein, M.A., Al-Aqeeli, N.: Magnesium-based composites and alloys for medical applications: a review of mechanical and corrosion properties. J. Alloys Compd. 792, 1162–1190 (2019)CrossRef Ali, M., Hussein, M.A., Al-Aqeeli, N.: Magnesium-based composites and alloys for medical applications: a review of mechanical and corrosion properties. J. Alloys Compd. 792, 1162–1190 (2019)CrossRef
26.
Zurück zum Zitat Zheng, Y.F., Gu, X.N., Xi, Y.L., Chai, D.L.: In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. Acta Biomater. 6, 1783–1791 (2010)PubMedCrossRef Zheng, Y.F., Gu, X.N., Xi, Y.L., Chai, D.L.: In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. Acta Biomater. 6, 1783–1791 (2010)PubMedCrossRef
27.
Zurück zum Zitat Watanabe, H., Mukai, T., Mabuchi, M., Higashi, K.: High-strain-rate superplasticity at low temperature in a ZK61 magnesium alloy produced by powder metallurgy. Scr. Mater. 41, 209–213 (1999)CrossRef Watanabe, H., Mukai, T., Mabuchi, M., Higashi, K.: High-strain-rate superplasticity at low temperature in a ZK61 magnesium alloy produced by powder metallurgy. Scr. Mater. 41, 209–213 (1999)CrossRef
28.
Zurück zum Zitat Wong, W.L.E., Karthik, S., Gupta, M.: Development of high performance Mg–Al2O3 composites containing Al2O3 in submicron length scale using microwave assisted rapid sintering. Mater. Sci. Technol. 21, 1063–1070 (2005)CrossRef Wong, W.L.E., Karthik, S., Gupta, M.: Development of high performance Mg–Al2O3 composites containing Al2O3 in submicron length scale using microwave assisted rapid sintering. Mater. Sci. Technol. 21, 1063–1070 (2005)CrossRef
29.
Zurück zum Zitat Rashad, M., et al.: Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys. J. Magnes. Alloy 1, 242–248 (2013)CrossRef Rashad, M., et al.: Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys. J. Magnes. Alloy 1, 242–248 (2013)CrossRef
30.
Zurück zum Zitat Xu, N., Song, Q., Bao, Y., Fujii, H.: Investigation on microstructure and mechanical properties of cold source assistant friction stir processed AZ31B magnesium alloy. Mater. Sci. Eng. A 761, 138027 (2019)CrossRef Xu, N., Song, Q., Bao, Y., Fujii, H.: Investigation on microstructure and mechanical properties of cold source assistant friction stir processed AZ31B magnesium alloy. Mater. Sci. Eng. A 761, 138027 (2019)CrossRef
31.
Zurück zum Zitat Ren, W., Li, J., Xin, R.: Texture dependent shifting behavior of neutral layer in bending of magnesium alloys. Scr. Mater. 170, 6–10 (2019)CrossRef Ren, W., Li, J., Xin, R.: Texture dependent shifting behavior of neutral layer in bending of magnesium alloys. Scr. Mater. 170, 6–10 (2019)CrossRef
32.
Zurück zum Zitat Zhou, J., et al.: Effect of laser surface melting with alternating magnetic field on wear and corrosion resistance of magnesium alloy. Surf. Coat. Technol. 309, 212–219 (2017)CrossRef Zhou, J., et al.: Effect of laser surface melting with alternating magnetic field on wear and corrosion resistance of magnesium alloy. Surf. Coat. Technol. 309, 212–219 (2017)CrossRef
33.
Zurück zum Zitat Barani, B., Lakshminarayanan, A.K., Subashini, R.: Microstructural characteristics of chitosan deposited az91 magnesium alloy. Mater. Today Proc. 16, 456–462 (2019)CrossRef Barani, B., Lakshminarayanan, A.K., Subashini, R.: Microstructural characteristics of chitosan deposited az91 magnesium alloy. Mater. Today Proc. 16, 456–462 (2019)CrossRef
34.
Zurück zum Zitat Kozina, I., Krawiec, H., Starowicz, M., Kawalec, M.: Corrosion resistance of MgZn alloy covered by chitosan-based coatings. Int. J. Mol. Sci. 22, 8301 (2021)PubMedCentralPubMedCrossRef Kozina, I., Krawiec, H., Starowicz, M., Kawalec, M.: Corrosion resistance of MgZn alloy covered by chitosan-based coatings. Int. J. Mol. Sci. 22, 8301 (2021)PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Dargusch, M.S., et al.: Improved biodegradable magnesium alloys through advanced solidification processing. Scr. Mater. 177, 234–240 (2020)CrossRef Dargusch, M.S., et al.: Improved biodegradable magnesium alloys through advanced solidification processing. Scr. Mater. 177, 234–240 (2020)CrossRef
36.
Zurück zum Zitat Seifiyan, H., Heydarzadeh Sohi, M., Ansari, M., Ahmadkhaniha, D., Saremi, M.: Influence of friction stir processing conditions on corrosion behavior of AZ31B magnesium alloy. J. Magnes. Alloy 7, 605–616 (2019) Seifiyan, H., Heydarzadeh Sohi, M., Ansari, M., Ahmadkhaniha, D., Saremi, M.: Influence of friction stir processing conditions on corrosion behavior of AZ31B magnesium alloy. J. Magnes. Alloy 7, 605–616 (2019)
37.
Zurück zum Zitat Xu, P., et al.: Investigation of the surface modification of magnesium particles with stannate on the corrosion resistance of a Mg-rich epoxy coating on AZ91D magnesium alloy. Prog. Org. Coat. 135, 591–600 (2019)CrossRef Xu, P., et al.: Investigation of the surface modification of magnesium particles with stannate on the corrosion resistance of a Mg-rich epoxy coating on AZ91D magnesium alloy. Prog. Org. Coat. 135, 591–600 (2019)CrossRef
38.
Zurück zum Zitat Witte, F., et al.: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12, 63–72 (2008)CrossRef Witte, F., et al.: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12, 63–72 (2008)CrossRef
39.
Zurück zum Zitat Gunde, P., Hänzi, A.C., Sologubenko, A.S., Uggowitzer, P.J.: High-strength magnesium alloys for degradable implant applications. Mater. Sci. Eng. A 528, 1047–1054 (2011)CrossRef Gunde, P., Hänzi, A.C., Sologubenko, A.S., Uggowitzer, P.J.: High-strength magnesium alloys for degradable implant applications. Mater. Sci. Eng. A 528, 1047–1054 (2011)CrossRef
40.
Zurück zum Zitat Li, L., Gao, J., Wang, Y.: Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf. Coat. Technol. 185, 92–98 (2004)CrossRef Li, L., Gao, J., Wang, Y.: Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf. Coat. Technol. 185, 92–98 (2004)CrossRef
41.
Zurück zum Zitat Carboneras, M., Hernández, L.S., del Valle, J.A., García-Alonso, M.C., Escudero, M.L.: Corrosion protection of different environmentally friendly coatings on powder metallurgy magnesium. J. Alloys Compd. 496, 442–448 (2010)CrossRef Carboneras, M., Hernández, L.S., del Valle, J.A., García-Alonso, M.C., Escudero, M.L.: Corrosion protection of different environmentally friendly coatings on powder metallurgy magnesium. J. Alloys Compd. 496, 442–448 (2010)CrossRef
42.
Zurück zum Zitat Xianhua, C., Yuxiao, G., Fusheng, P.: Research progress in magnesium alloys as functional materials. Rare Met. Mater. Eng. 45, 2269–2274 (2016)CrossRef Xianhua, C., Yuxiao, G., Fusheng, P.: Research progress in magnesium alloys as functional materials. Rare Met. Mater. Eng. 45, 2269–2274 (2016)CrossRef
43.
Zurück zum Zitat Yang, X., Patel, J.B., Huang, Y., Mendis, C.L., Fan, Z.: Towards directly formable thin gauge AZ31 Mg alloy sheet production by melt conditioned twin roll casting. Mater. Des. 179, 107887 (2019)CrossRef Yang, X., Patel, J.B., Huang, Y., Mendis, C.L., Fan, Z.: Towards directly formable thin gauge AZ31 Mg alloy sheet production by melt conditioned twin roll casting. Mater. Des. 179, 107887 (2019)CrossRef
44.
Zurück zum Zitat Bai, S., Fang, G., Zhou, J.: Integrated physical and numerical simulations of weld seam formation during extrusion of magnesium alloy. J. Mater. Process. Technol. 266, 82–95 (2019)CrossRef Bai, S., Fang, G., Zhou, J.: Integrated physical and numerical simulations of weld seam formation during extrusion of magnesium alloy. J. Mater. Process. Technol. 266, 82–95 (2019)CrossRef
45.
Zurück zum Zitat Wang, Y., Culbertson, D., Jiang, Y.: An experimental study of anisotropic fatigue behavior of rolled AZ31B magnesium alloy. Mater. Des. 186, 108266 (2020)CrossRef Wang, Y., Culbertson, D., Jiang, Y.: An experimental study of anisotropic fatigue behavior of rolled AZ31B magnesium alloy. Mater. Des. 186, 108266 (2020)CrossRef
46.
Zurück zum Zitat Chen, J., et al.: Mechanical properties of magnesium alloys for medical application: a review. J. Mech. Behav. Biomed. Mater. 87, 68–79 (2018)PubMedCrossRef Chen, J., et al.: Mechanical properties of magnesium alloys for medical application: a review. J. Mech. Behav. Biomed. Mater. 87, 68–79 (2018)PubMedCrossRef
47.
Zurück zum Zitat Shuai, C., et al.: Mechanical alloying of immiscible metallic systems: process, microstructure, and mechanism. Adv. Eng. Mater. 23 (2021) Shuai, C., et al.: Mechanical alloying of immiscible metallic systems: process, microstructure, and mechanism. Adv. Eng. Mater. 23 (2021)
48.
Zurück zum Zitat Deng, H., et al.: A high-Nb–TiAl alloy with ultrafine-grained structure fabricated by cryomilling and spark plasma sintering. Rare Met. 42, 1678–1685 (2023)CrossRef Deng, H., et al.: A high-Nb–TiAl alloy with ultrafine-grained structure fabricated by cryomilling and spark plasma sintering. Rare Met. 42, 1678–1685 (2023)CrossRef
49.
Zurück zum Zitat Guyon, J., Hazotte, A., Monchoux, J.P., Bouzy, E.: Effect of powder state on spark plasma sintering of TiAl alloys. Intermetallics 34, 94–100 (2013)CrossRef Guyon, J., Hazotte, A., Monchoux, J.P., Bouzy, E.: Effect of powder state on spark plasma sintering of TiAl alloys. Intermetallics 34, 94–100 (2013)CrossRef
50.
Zurück zum Zitat Shanmugasundaram, T., Guyon, J., Monchoux, J.P., Hazotte, A., Bouzy, E.: On grain refinement of a γ-TiAl alloy using cryo-milling followed by spark plasma sintering. Intermetallics 66, 141–148 (2015)CrossRef Shanmugasundaram, T., Guyon, J., Monchoux, J.P., Hazotte, A., Bouzy, E.: On grain refinement of a γ-TiAl alloy using cryo-milling followed by spark plasma sintering. Intermetallics 66, 141–148 (2015)CrossRef
51.
Zurück zum Zitat Khan, M.U.F., Patil, A., Christudasjustus, J., Borkar, T., Gupta, R.K.: Spark plasma sintering of a high-energy ball milled Mg-10 wt% Al alloy. J. Magnes. Alloy 8, 319–328 (2020)CrossRef Khan, M.U.F., Patil, A., Christudasjustus, J., Borkar, T., Gupta, R.K.: Spark plasma sintering of a high-energy ball milled Mg-10 wt% Al alloy. J. Magnes. Alloy 8, 319–328 (2020)CrossRef
52.
Zurück zum Zitat Wang, N., et al.: AZ31 magnesium alloy with ultrafine grains as the anode for Mg-air battery. Electrochim. Acta 378, 138135 (2021)CrossRef Wang, N., et al.: AZ31 magnesium alloy with ultrafine grains as the anode for Mg-air battery. Electrochim. Acta 378, 138135 (2021)CrossRef
53.
Zurück zum Zitat Seth, P.P., Singh, N., Singh, M., Prakash, O., Kumar, D.: Formation of fine Mg2Si phase in Mg–Si alloy via solid-state sintering using high energy ball milling. J. Alloys Compd. 821, 153205 (2020)CrossRef Seth, P.P., Singh, N., Singh, M., Prakash, O., Kumar, D.: Formation of fine Mg2Si phase in Mg–Si alloy via solid-state sintering using high energy ball milling. J. Alloys Compd. 821, 153205 (2020)CrossRef
54.
Zurück zum Zitat Kumar, S.D., et al.: Mechanical properties of magnesium-silicon carbide composite fabricated through powder metallurgy route. Mater. Today Proc. 27, 1137–1141 (2020)CrossRef Kumar, S.D., et al.: Mechanical properties of magnesium-silicon carbide composite fabricated through powder metallurgy route. Mater. Today Proc. 27, 1137–1141 (2020)CrossRef
55.
Zurück zum Zitat Feng, J., et al.: Tensile flow and work hardening behaviors of ultrafine-grained Mg–3Al–Zn alloy at elevated temperatures. Mater. Sci. Eng. A 667, 97–105 (2016)CrossRef Feng, J., et al.: Tensile flow and work hardening behaviors of ultrafine-grained Mg–3Al–Zn alloy at elevated temperatures. Mater. Sci. Eng. A 667, 97–105 (2016)CrossRef
56.
Zurück zum Zitat Tejeda-Ochoa, A., et al.: Metastable FCC structure of Ti–Mg alloy synthesized by mechanical alloying. Microsc. Microanal. 26, 2918–2920 (2020)CrossRef Tejeda-Ochoa, A., et al.: Metastable FCC structure of Ti–Mg alloy synthesized by mechanical alloying. Microsc. Microanal. 26, 2918–2920 (2020)CrossRef
58.
Zurück zum Zitat Salleh, E.M., Ramakrishnan, S., Hussain, Z.: Synthesis of biodegradable Mg–Zn alloy by mechanical alloying: effect of milling time. Procedia Chem. 19, 525–530 (2016)CrossRef Salleh, E.M., Ramakrishnan, S., Hussain, Z.: Synthesis of biodegradable Mg–Zn alloy by mechanical alloying: effect of milling time. Procedia Chem. 19, 525–530 (2016)CrossRef
59.
Zurück zum Zitat Li, B., Li, J., Zhao, H., Yu, X., Shao, H.: Mg-based metastable nano alloys for hydrogen storage. Int. J. Hydrog. Energy 44, 6007–6018 (2019)CrossRef Li, B., Li, J., Zhao, H., Yu, X., Shao, H.: Mg-based metastable nano alloys for hydrogen storage. Int. J. Hydrog. Energy 44, 6007–6018 (2019)CrossRef
60.
Zurück zum Zitat Fang, C., et al.: Microstructures and mechanical properties of Mg2Sn-nanophase reinforced Mg–Mg2Sn composite. Mater. Sci. Eng. A 684, 229–232 (2017)CrossRef Fang, C., et al.: Microstructures and mechanical properties of Mg2Sn-nanophase reinforced Mg–Mg2Sn composite. Mater. Sci. Eng. A 684, 229–232 (2017)CrossRef
61.
Zurück zum Zitat Wang, R., Fang, C.F., Xu, Z.Y., Wang, Y.M.: Correlation of milling time with phase evolution and thermal stability of Mg-25 wt% Sn alloy. J. Alloys Compd. 891, 162014 (2022)CrossRef Wang, R., Fang, C.F., Xu, Z.Y., Wang, Y.M.: Correlation of milling time with phase evolution and thermal stability of Mg-25 wt% Sn alloy. J. Alloys Compd. 891, 162014 (2022)CrossRef
62.
Zurück zum Zitat Hrapkowicz, B., Lesz, S., Kremzer, M., Karolus, M., Pakieła, W.: Mechanical alloying of Mg–Zn–Ca–Er alloy. Bull. Polish Acad. Sci. Tech. Sci. 69(e137587), 1–7 (2021) Hrapkowicz, B., Lesz, S., Kremzer, M., Karolus, M., Pakieła, W.: Mechanical alloying of Mg–Zn–Ca–Er alloy. Bull. Polish Acad. Sci. Tech. Sci. 69(e137587), 1–7 (2021)
63.
Zurück zum Zitat Zhong, H.C., Xu, J.B.: Tuning the de/hydriding thermodynamics and kinetics of Mg by mechanical alloying with Sn and Zn. Int. J. Hydrog. Energy 44, 2926–2933 (2019)CrossRef Zhong, H.C., Xu, J.B.: Tuning the de/hydriding thermodynamics and kinetics of Mg by mechanical alloying with Sn and Zn. Int. J. Hydrog. Energy 44, 2926–2933 (2019)CrossRef
64.
Zurück zum Zitat Gonzaga, S., et al.: Synthesis of magnesium-based alloys by mechanical alloying for implant applications. Coatings 13, 260 (2023)CrossRef Gonzaga, S., et al.: Synthesis of magnesium-based alloys by mechanical alloying for implant applications. Coatings 13, 260 (2023)CrossRef
65.
Zurück zum Zitat Maweja, K., Phasha, M., van der Berg, N.: Microstructure and crystal structure of an equimolar Mg–Ti alloy processed by Simoloyer high-energy ball mill. Powder Technol. 199, 256–263 (2010)CrossRef Maweja, K., Phasha, M., van der Berg, N.: Microstructure and crystal structure of an equimolar Mg–Ti alloy processed by Simoloyer high-energy ball mill. Powder Technol. 199, 256–263 (2010)CrossRef
66.
Zurück zum Zitat Zhang, Y., et al.: Improved hydrogen storage dynamics of amorphous and nanocrystalline Ce–Mg–Ni-based CeMg12-type alloys synthesized by ball milling. Renew. Energy 132, 167–175 (2019)CrossRef Zhang, Y., et al.: Improved hydrogen storage dynamics of amorphous and nanocrystalline Ce–Mg–Ni-based CeMg12-type alloys synthesized by ball milling. Renew. Energy 132, 167–175 (2019)CrossRef
67.
Zurück zum Zitat Zhang, Y., et al.: Structure and electrochemical hydrogen storage behaviors of Mg–Ce–Ni–Al-based alloys prepared by mechanical milling. J. Rare Earths 38, 1093–1102 (2020)CrossRef Zhang, Y., et al.: Structure and electrochemical hydrogen storage behaviors of Mg–Ce–Ni–Al-based alloys prepared by mechanical milling. J. Rare Earths 38, 1093–1102 (2020)CrossRef
68.
Zurück zum Zitat Bu, W., et al.: Nanocrystalline structure and electrochemical hydrogen storage properties of the as-milled Mg–V–Ni–Fe–Zn-based materials. Int. J. Hydrog. Energy 48, 6937–6946 (2023)CrossRef Bu, W., et al.: Nanocrystalline structure and electrochemical hydrogen storage properties of the as-milled Mg–V–Ni–Fe–Zn-based materials. Int. J. Hydrog. Energy 48, 6937–6946 (2023)CrossRef
69.
Zurück zum Zitat Hou, Z., Wei, X., Zhang, W., Yuan, Z., Ge, Q.: Electrochemical hydrogen storage performances of Mg–Ti–Ni–Co–Al-based alloys prepared by mechanical milling. J. Phys. Chem. Solids 149, 109788 (2021)CrossRef Hou, Z., Wei, X., Zhang, W., Yuan, Z., Ge, Q.: Electrochemical hydrogen storage performances of Mg–Ti–Ni–Co–Al-based alloys prepared by mechanical milling. J. Phys. Chem. Solids 149, 109788 (2021)CrossRef
70.
Zurück zum Zitat Zhang, Y., et al.: Effect of graphite (GR) content on electrochemical hydrogen storage performances of nanocrystalline and amorphous La9Ce1Mg80Ni5–Ni–GR composites synthesized by mechanical milling. Int. J. Hydrog. Energy 45, 29023–29033 (2020)CrossRef Zhang, Y., et al.: Effect of graphite (GR) content on electrochemical hydrogen storage performances of nanocrystalline and amorphous La9Ce1Mg80Ni5–Ni–GR composites synthesized by mechanical milling. Int. J. Hydrog. Energy 45, 29023–29033 (2020)CrossRef
71.
Zurück zum Zitat Sübütay, H., Şavklıyıldız, İ: Effect of high-energy ball milling in ternary material system of (Mg–Sn–Na). Crystals 13, 1230 (2023)CrossRef Sübütay, H., Şavklıyıldız, İ: Effect of high-energy ball milling in ternary material system of (Mg–Sn–Na). Crystals 13, 1230 (2023)CrossRef
72.
Zurück zum Zitat Yong, H., et al.: Characterization of microstructure, hydrogen storage kinetics and thermodynamics of ball-milled Mg90Y1.5Ce1.5Ni7 alloy. Int. J. Hydrog. Energy46, 17802–17813 (2021) Yong, H., et al.: Characterization of microstructure, hydrogen storage kinetics and thermodynamics of ball-milled Mg90Y1.5Ce1.5Ni7 alloy. Int. J. Hydrog. Energy46, 17802–17813 (2021)
73.
Zurück zum Zitat Yuan, Z., et al.: Influence of CeO2 nanoparticles on microstructure and hydrogen storage performance of Mg–Ni–Zn alloy. Mater. Charact. 178, 111248 (2021)CrossRef Yuan, Z., et al.: Influence of CeO2 nanoparticles on microstructure and hydrogen storage performance of Mg–Ni–Zn alloy. Mater. Charact. 178, 111248 (2021)CrossRef
74.
Zurück zum Zitat Song, M.Y., Kwak, Y.J., Shin, H.S., Lee, S.H., Kim, B.G.: Improvement of hydrogen-storage properties of MgH2 by Ni, LiBH4, and Ti addition. Int. J. Hydrog. Energy 38, 1910–1917 (2013)CrossRef Song, M.Y., Kwak, Y.J., Shin, H.S., Lee, S.H., Kim, B.G.: Improvement of hydrogen-storage properties of MgH2 by Ni, LiBH4, and Ti addition. Int. J. Hydrog. Energy 38, 1910–1917 (2013)CrossRef
75.
Zurück zum Zitat Xiao, F., Guo, Y., Yang, R., Li, J.: Hydrogen generation from hydrolysis of activated magnesium/low-melting-point metals alloys. Int. J. Hydrog. Energy 44, 1366–1373 (2019)CrossRef Xiao, F., Guo, Y., Yang, R., Li, J.: Hydrogen generation from hydrolysis of activated magnesium/low-melting-point metals alloys. Int. J. Hydrog. Energy 44, 1366–1373 (2019)CrossRef
76.
Zurück zum Zitat Khan, M.U.F., Mirza, F., Gupta, R.K.: High hardness and thermal stability of nanocrystalline Mg–Al alloys synthesized by the high-energy ball milling. Materialia 4, 406–416 (2018)CrossRef Khan, M.U.F., Mirza, F., Gupta, R.K.: High hardness and thermal stability of nanocrystalline Mg–Al alloys synthesized by the high-energy ball milling. Materialia 4, 406–416 (2018)CrossRef
77.
Zurück zum Zitat Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95–99 (2015)CrossRef Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95–99 (2015)CrossRef
78.
Zurück zum Zitat Ferraz, M. de B., Botta, W.J., Zepon, G.: Synthesis, characterization and first hydrogen absorption/desorption of the Mg35Al15Ti25V10Zn15 high entropy alloy. Int. J. Hydrog. Energy47, 22881–22892 (2022) Ferraz, M. de B., Botta, W.J., Zepon, G.: Synthesis, characterization and first hydrogen absorption/desorption of the Mg35Al15Ti25V10Zn15 high entropy alloy. Int. J. Hydrog. Energy47, 22881–22892 (2022)
79.
Zurück zum Zitat Hashimoto, H., Isobe, S., Hashimoto, N., Oka, H.: Synthesis of Li–Mg–Al–Ti based lightweight high entropy alloys by mechanical alloying and investigation of conditions for solid solution formation. J. Alloy Metall. Syst. 4, 100037 (2023)CrossRef Hashimoto, H., Isobe, S., Hashimoto, N., Oka, H.: Synthesis of Li–Mg–Al–Ti based lightweight high entropy alloys by mechanical alloying and investigation of conditions for solid solution formation. J. Alloy Metall. Syst. 4, 100037 (2023)CrossRef
80.
Zurück zum Zitat Marques, F., et al.: Mg-containing multi-principal element alloys for hydrogen storage: a study of the MgTiNbCr0.5Mn0.5Ni0.5 and Mg0.68TiNbNi0.55 compositions. Int. J. Hydrog. Energy45, 19539–19552 (2020) Marques, F., et al.: Mg-containing multi-principal element alloys for hydrogen storage: a study of the MgTiNbCr0.5Mn0.5Ni0.5 and Mg0.68TiNbNi0.55 compositions. Int. J. Hydrog. Energy45, 19539–19552 (2020)
81.
Zurück zum Zitat Cermak, J., Kral, L., Roupcova, P.: A new light-element multi-principal-elements alloy AlMg2TiZn and its potential for hydrogen storage. Renew. Energy 198, 1186–1192 (2022)CrossRef Cermak, J., Kral, L., Roupcova, P.: A new light-element multi-principal-elements alloy AlMg2TiZn and its potential for hydrogen storage. Renew. Energy 198, 1186–1192 (2022)CrossRef
82.
Zurück zum Zitat Strozi, R.B., Leiva, D.R., Huot, J., Botta, W.J., Zepon, G.: Synthesis and hydrogen storage behavior of Mg–V–Al–Cr–Ni high entropy alloys. Int. J. Hydrog. Energy 46, 2351–2361 (2021)CrossRef Strozi, R.B., Leiva, D.R., Huot, J., Botta, W.J., Zepon, G.: Synthesis and hydrogen storage behavior of Mg–V–Al–Cr–Ni high entropy alloys. Int. J. Hydrog. Energy 46, 2351–2361 (2021)CrossRef
84.
Zurück zum Zitat Bemanifar, S., Rajabi, M., Hosseinipour, S.J.: Microstructural characterization of Mg–SiC nanocomposite powders fabricated by high energy mechanical milling. Silicon 9, 823–827 (2017)CrossRef Bemanifar, S., Rajabi, M., Hosseinipour, S.J.: Microstructural characterization of Mg–SiC nanocomposite powders fabricated by high energy mechanical milling. Silicon 9, 823–827 (2017)CrossRef
85.
Zurück zum Zitat Soorya Prakash, K., Balasundar, P., Nagaraja, S., Gopal, P.M., Kavimani, V.: Mechanical and wear behaviour of Mg–SiC–Gr hybrid composites. J. Magnes. Alloy 4, 197–206 (2016) Soorya Prakash, K., Balasundar, P., Nagaraja, S., Gopal, P.M., Kavimani, V.: Mechanical and wear behaviour of Mg–SiC–Gr hybrid composites. J. Magnes. Alloy 4, 197–206 (2016)
86.
Zurück zum Zitat Shahin, M., Munir, K., Wen, C., Li, Y.: Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials. J. Alloys Compd. 828, 154461 (2020)CrossRef Shahin, M., Munir, K., Wen, C., Li, Y.: Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials. J. Alloys Compd. 828, 154461 (2020)CrossRef
87.
Zurück zum Zitat Kamrani, S., Penther, D., Ghasemi, A., Riedel, R., Fleck, C.: Microstructural characterization of Mg–SiC nanocomposite synthesized by high energy ball milling. Adv. Powder Technol. 29, 1742–1748 (2018)CrossRef Kamrani, S., Penther, D., Ghasemi, A., Riedel, R., Fleck, C.: Microstructural characterization of Mg–SiC nanocomposite synthesized by high energy ball milling. Adv. Powder Technol. 29, 1742–1748 (2018)CrossRef
88.
Zurück zum Zitat Li, P., Tan, W., Gao, M., Shi, K.: Strengthening of the magnesium matrix composites hybrid reinforced by chemically oxidized carbon nanotubes and in situ Mg2Sip. J. Alloys Compd. 858, 157673 (2021)CrossRef Li, P., Tan, W., Gao, M., Shi, K.: Strengthening of the magnesium matrix composites hybrid reinforced by chemically oxidized carbon nanotubes and in situ Mg2Sip. J. Alloys Compd. 858, 157673 (2021)CrossRef
89.
Zurück zum Zitat Razzaghi, M., Kasiri-Asgarani, M., Bakhsheshi-Rad, H.R., Ghayour, H.: Microstructure, mechanical properties, and in-vitro biocompatibility of nano-NiTi reinforced Mg–3Zn–0.5Ag alloy: prepared by mechanical alloying for implant applications. Compos. Part B Eng. 190, 107947 (2020) Razzaghi, M., Kasiri-Asgarani, M., Bakhsheshi-Rad, H.R., Ghayour, H.: Microstructure, mechanical properties, and in-vitro biocompatibility of nano-NiTi reinforced Mg–3Zn–0.5Ag alloy: prepared by mechanical alloying for implant applications. Compos. Part B Eng. 190, 107947 (2020)
90.
Zurück zum Zitat Zhang, Y., et al.: Electrochemical hydrogen storage behaviors of as-milled Mg–Ce–Ni–Al-based alloys applied to Ni-MH battery. Appl. Surf. Sci. 494, 170–178 (2019)CrossRef Zhang, Y., et al.: Electrochemical hydrogen storage behaviors of as-milled Mg–Ce–Ni–Al-based alloys applied to Ni-MH battery. Appl. Surf. Sci. 494, 170–178 (2019)CrossRef
91.
Zurück zum Zitat Sun, S., et al.: Microstructure and mechanical properties of AZ31 magnesium alloy reinforced with novel sub-micron vanadium particles by powder metallurgy. J. Mater. Res. Technol. 15, 1789–1800 (2021)CrossRef Sun, S., et al.: Microstructure and mechanical properties of AZ31 magnesium alloy reinforced with novel sub-micron vanadium particles by powder metallurgy. J. Mater. Res. Technol. 15, 1789–1800 (2021)CrossRef
92.
Zurück zum Zitat Zhou, D., et al.: Hydrogen storage property improvement of ball-milled Mg2.3Y0.1Ni alloy with graphene. Int. J. Hydrog. Energy 50, part D, 123–135 (2023) Zhou, D., et al.: Hydrogen storage property improvement of ball-milled Mg2.3Y0.1Ni alloy with graphene. Int. J. Hydrog. Energy 50, part D, 123–135 (2023)
93.
Zurück zum Zitat Peng, C., Li, Y., Zhang, Q.: Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: the role of in-situ hydrogenolysis of nickelocene in ball milling process. J. Alloys Compd. 900, 163547 (2022)CrossRef Peng, C., Li, Y., Zhang, Q.: Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: the role of in-situ hydrogenolysis of nickelocene in ball milling process. J. Alloys Compd. 900, 163547 (2022)CrossRef
94.
Zurück zum Zitat Xie, G., Takada, H., Kanetaka, H.: Development of high performance MgFe alloy as potential biodegradable materials. Mater. Sci. Eng. A 671, 48–53 (2016)CrossRef Xie, G., Takada, H., Kanetaka, H.: Development of high performance MgFe alloy as potential biodegradable materials. Mater. Sci. Eng. A 671, 48–53 (2016)CrossRef
95.
Zurück zum Zitat Park, K., Park, J., Kwon, H.: Effect of intermetallic compound on the Al-Mg composite materials fabricated by mechanical ball milling and spark plasma sintering. J. Alloys Compd. 739, 311–318 (2018)CrossRef Park, K., Park, J., Kwon, H.: Effect of intermetallic compound on the Al-Mg composite materials fabricated by mechanical ball milling and spark plasma sintering. J. Alloys Compd. 739, 311–318 (2018)CrossRef
96.
Zurück zum Zitat Lesz, S., Hrapkowicz, B., Karolus, M., Gołombek, K.: Characteristics of the Mg–Zn–Ca–Gd alloy after mechanical alloying. Materials (Basel) 14, 226 (2021) Lesz, S., Hrapkowicz, B., Karolus, M., Gołombek, K.: Characteristics of the Mg–Zn–Ca–Gd alloy after mechanical alloying. Materials (Basel) 14, 226 (2021)
97.
Zurück zum Zitat Zhou, H., et al.: Microstructures and mechanical properties of nanocrystalline AZ31 magnesium alloy powders with submicron TiB2 additions prepared by mechanical milling. Crystals 10, 550 (2020)CrossRef Zhou, H., et al.: Microstructures and mechanical properties of nanocrystalline AZ31 magnesium alloy powders with submicron TiB2 additions prepared by mechanical milling. Crystals 10, 550 (2020)CrossRef
98.
Zurück zum Zitat Chaubey, A.K., et al.: High-strength ultrafine grain Mg–7.4%Al alloy synthesized by consolidation of mechanically alloyed powders. J. Alloys Compd. 610, 456–461 (2014) Chaubey, A.K., et al.: High-strength ultrafine grain Mg–7.4%Al alloy synthesized by consolidation of mechanically alloyed powders. J. Alloys Compd. 610, 456–461 (2014)
99.
Zurück zum Zitat Feng, J., Li, X.W., Sun, H.F., Fang, W.B.: An ultra-high strength Mg–3Al–Zn alloy with low tension-compression yield asymmetry. Mater. Lett. 269, 127489 (2020)CrossRef Feng, J., Li, X.W., Sun, H.F., Fang, W.B.: An ultra-high strength Mg–3Al–Zn alloy with low tension-compression yield asymmetry. Mater. Lett. 269, 127489 (2020)CrossRef
100.
Zurück zum Zitat Zheng, B., et al.: High strength, nano-structured Mg–Al–Zn alloy. Mater. Sci. Eng. A 528, 2180–2191 (2011)CrossRef Zheng, B., et al.: High strength, nano-structured Mg–Al–Zn alloy. Mater. Sci. Eng. A 528, 2180–2191 (2011)CrossRef
101.
Zurück zum Zitat Yu, H., Sun, Y., Hu, L., Wan, Z., Zhou, H.: Microstructure and properties of mechanically milled AZ61 powders dispersed with submicron/nanometer Ti particulates. Mater. Charact. 127, 272–278 (2017)CrossRef Yu, H., Sun, Y., Hu, L., Wan, Z., Zhou, H.: Microstructure and properties of mechanically milled AZ61 powders dispersed with submicron/nanometer Ti particulates. Mater. Charact. 127, 272–278 (2017)CrossRef
102.
Zurück zum Zitat Al Bacha, S., et al.: Hydrogen generation from ball milled Mg alloy waste by hydrolysis reaction. J. Power. Sour. 479, 228711 (2020)CrossRef Al Bacha, S., et al.: Hydrogen generation from ball milled Mg alloy waste by hydrolysis reaction. J. Power. Sour. 479, 228711 (2020)CrossRef
103.
Zurück zum Zitat Al Bacha, S., et al.: Effect of ball milling strategy (milling device for scaling-up) on the hydrolysis performance of Mg alloy waste. Int. J. Hydrog. Energy45, 20883–20893 (2020) Al Bacha, S., et al.: Effect of ball milling strategy (milling device for scaling-up) on the hydrolysis performance of Mg alloy waste. Int. J. Hydrog. Energy45, 20883–20893 (2020)
104.
Zurück zum Zitat Rattan Paul, D., et al.: Effect of ball milling and iron mixing on structural and morphological properties of magnesium for hydrogen storage application. Mater. Today Proc. 42, 1673–1677 (2021) Rattan Paul, D., et al.: Effect of ball milling and iron mixing on structural and morphological properties of magnesium for hydrogen storage application. Mater. Today Proc. 42, 1673–1677 (2021)
105.
Zurück zum Zitat Lyu, J., Lider, A., Kudiiarov, V.: Using ball milling for modification of the hydrogenation/dehydrogenation process in magnesium-based hydrogen storage materials: an overview. Metals 9, 768 (2019) Lyu, J., Lider, A., Kudiiarov, V.: Using ball milling for modification of the hydrogenation/dehydrogenation process in magnesium-based hydrogen storage materials: an overview. Metals 9, 768 (2019)
106.
Zurück zum Zitat Wang, Y., Wang, X., Li, C.M.: Electrochemical hydrogen storage of ball-milled MmMg12 alloy–Ni composites. Int. J. Hydrog. Energy 35, 3550–3554 (2010)CrossRef Wang, Y., Wang, X., Li, C.M.: Electrochemical hydrogen storage of ball-milled MmMg12 alloy–Ni composites. Int. J. Hydrog. Energy 35, 3550–3554 (2010)CrossRef
107.
Zurück zum Zitat Zhang, Y., et al.: A comparison study of hydrogen storage performances of SmMg11Ni alloys prepared by melt spinning and ball milling. J. Rare Earths 36, 409–417 (2018)CrossRef Zhang, Y., et al.: A comparison study of hydrogen storage performances of SmMg11Ni alloys prepared by melt spinning and ball milling. J. Rare Earths 36, 409–417 (2018)CrossRef
108.
Zurück zum Zitat Yang, Y., et al.: Research advances in magnesium and magnesium alloys worldwide in 2020. J. Magnes. Alloy 9, 705–747 (2021)CrossRef Yang, Y., et al.: Research advances in magnesium and magnesium alloys worldwide in 2020. J. Magnes. Alloy 9, 705–747 (2021)CrossRef
109.
Zurück zum Zitat Pighin, S.A., Urretavizcaya, G., Bobet, J.-L., Castro, F.J.: Nanostructured Mg for hydrogen production by hydrolysis obtained by MgH2 milling and dehydriding. J. Alloys Compd. 827, 154000 (2020)CrossRef Pighin, S.A., Urretavizcaya, G., Bobet, J.-L., Castro, F.J.: Nanostructured Mg for hydrogen production by hydrolysis obtained by MgH2 milling and dehydriding. J. Alloys Compd. 827, 154000 (2020)CrossRef
110.
Zurück zum Zitat Al Bacha, S., Aubert, I., Zakhour, M., Nakhl, M., Bobet, J.-L.: Hydrolysis properties, corrosion behavior and microhardness of AZ91 “model” alloys. J. Alloys Compd. 845, 156283 (2020) Al Bacha, S., Aubert, I., Zakhour, M., Nakhl, M., Bobet, J.-L.: Hydrolysis properties, corrosion behavior and microhardness of AZ91 “model” alloys. J. Alloys Compd. 845, 156283 (2020)
111.
Zurück zum Zitat Lobo, N., Takasaki, A., Mineo, K., Klimkowicz, A., Goc, K.: Stability investigation of the γ-MgH2 phase synthesized by high-energy ball milling. Int. J. Hydrog. Energy 44, 29179–29188 (2019)CrossRef Lobo, N., Takasaki, A., Mineo, K., Klimkowicz, A., Goc, K.: Stability investigation of the γ-MgH2 phase synthesized by high-energy ball milling. Int. J. Hydrog. Energy 44, 29179–29188 (2019)CrossRef
112.
Zurück zum Zitat Fujiwara, K., et al.: New Mg–V–CrBCC alloys synthesized by high-pressure torsion and ball milling. Mater. Trans. 59, 741–746 (2018)CrossRef Fujiwara, K., et al.: New Mg–V–CrBCC alloys synthesized by high-pressure torsion and ball milling. Mater. Trans. 59, 741–746 (2018)CrossRef
113.
Zurück zum Zitat Pang, X., Ran, L., Chen, Y., Luo, Y., Pan, F.: Enhancing hydrogen storage performance via optimizing Y and Ni element in magnesium alloy. J. Magnes. Alloy. 10, 821–835 (2022)CrossRef Pang, X., Ran, L., Chen, Y., Luo, Y., Pan, F.: Enhancing hydrogen storage performance via optimizing Y and Ni element in magnesium alloy. J. Magnes. Alloy. 10, 821–835 (2022)CrossRef
114.
Zurück zum Zitat Panwar, K., Srivastava, S.: Enhancement in hydrogenation properties of ball-milled AB5-type hydrogen storage alloy through catalyst. J. Phys. Conf. Ser. 2267, 012052 (2022)CrossRef Panwar, K., Srivastava, S.: Enhancement in hydrogenation properties of ball-milled AB5-type hydrogen storage alloy through catalyst. J. Phys. Conf. Ser. 2267, 012052 (2022)CrossRef
115.
Zurück zum Zitat Liao, W., et al.: Enhancing (de)hydrogenation kinetics properties of the Mg/MgH2 system by adding ANi5 (A = Ce, Nd, Pr, Sm, and Y) alloys via ball milling. J. Rare Earths 39, 1010–1016 (2021)CrossRef Liao, W., et al.: Enhancing (de)hydrogenation kinetics properties of the Mg/MgH2 system by adding ANi5 (A = Ce, Nd, Pr, Sm, and Y) alloys via ball milling. J. Rare Earths 39, 1010–1016 (2021)CrossRef
116.
Zurück zum Zitat Mordike, B., Ebert, T.: Magnesium. Mater. Sci. Eng. A 302, 37–45 (2001)CrossRef Mordike, B., Ebert, T.: Magnesium. Mater. Sci. Eng. A 302, 37–45 (2001)CrossRef
117.
Zurück zum Zitat Gupta, M.: Utilizing magnesium based materials to reduce green house gas emissions in aerospace sector. Aeronaut. Aerosp. Open Access J. 1(1), 41–46 (2017) Gupta, M.: Utilizing magnesium based materials to reduce green house gas emissions in aerospace sector. Aeronaut. Aerosp. Open Access J. 1(1), 41–46 (2017)
119.
Zurück zum Zitat Kurzynowski, T., Pawlak, A., Smolina, I.: The potential of SLM technology for processing magnesium alloys in aerospace industry. Arch. Civ. Mech. Eng. 20, 23 (2020)CrossRef Kurzynowski, T., Pawlak, A., Smolina, I.: The potential of SLM technology for processing magnesium alloys in aerospace industry. Arch. Civ. Mech. Eng. 20, 23 (2020)CrossRef
120.
Zurück zum Zitat Luo, A.A.: Applications: aerospace, automotive and other structural applications of magnesium. In: Pekguleryuz, M.O., Kainer, K.U., Kaya, A.A. (eds.) Fundamentals of Magnesium Alloy Metallurgy, pp. 266–316. Woodhead Publishing (2013). https://doi.org/10.1533/9780857097293.266 Luo, A.A.: Applications: aerospace, automotive and other structural applications of magnesium. In: Pekguleryuz, M.O., Kainer, K.U., Kaya, A.A. (eds.) Fundamentals of Magnesium Alloy Metallurgy, pp. 266–316. Woodhead Publishing (2013). https://​doi.​org/​10.​1533/​9780857097293.​266
121.
Zurück zum Zitat Tan, J., Ramakrishna, S.: Applications of magnesium and its alloys: a review. Appl. Sci. 11, 6861 (2021)CrossRef Tan, J., Ramakrishna, S.: Applications of magnesium and its alloys: a review. Appl. Sci. 11, 6861 (2021)CrossRef
122.
123.
Zurück zum Zitat Kulekci, M.K.: Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851–865 (2008)CrossRef Kulekci, M.K.: Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851–865 (2008)CrossRef
124.
Zurück zum Zitat Sankaranarayanan, S., Gupta, M.: Emergence of god’s favorite metallic element: magnesium based materials for engineering and biomedical applications. Mater. Today Proc. 39, 311–316 (2021)CrossRef Sankaranarayanan, S., Gupta, M.: Emergence of god’s favorite metallic element: magnesium based materials for engineering and biomedical applications. Mater. Today Proc. 39, 311–316 (2021)CrossRef
126.
Zurück zum Zitat Chinthamani, S., Kannan, G., George, G.D., Sreedharan, C.E.S., Rajagopal, K.S.: Effect of nano B4C on the tribological behaviour of magnesium alloy prepared through powder metallurgy. Mater. Sci. 26, 392–400 (2020) Chinthamani, S., Kannan, G., George, G.D., Sreedharan, C.E.S., Rajagopal, K.S.: Effect of nano B4C on the tribological behaviour of magnesium alloy prepared through powder metallurgy. Mater. Sci. 26, 392–400 (2020)
127.
Zurück zum Zitat Xu, L., et al.: In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 30, 1512–1523 (2009)PubMedCrossRef Xu, L., et al.: In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 30, 1512–1523 (2009)PubMedCrossRef
128.
Zurück zum Zitat Liu, C., Xin, Y., Tang, G., Chu, P.K.: Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid. Mater. Sci. Eng. A 456, 350–357 (2007)CrossRef Liu, C., Xin, Y., Tang, G., Chu, P.K.: Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid. Mater. Sci. Eng. A 456, 350–357 (2007)CrossRef
129.
Zurück zum Zitat Xin, Y., et al.: Corrosion behavior of ZrN/Zr coated biomedical AZ91 magnesium alloy. Surf. Coat. Technol. 203, 2554–2557 (2009)CrossRef Xin, Y., et al.: Corrosion behavior of ZrN/Zr coated biomedical AZ91 magnesium alloy. Surf. Coat. Technol. 203, 2554–2557 (2009)CrossRef
130.
Zurück zum Zitat Haghshenas, M.: Mechanical characteristics of biodegradable magnesium matrix composites: a review. J. Magnes. Alloy 5, 189–201 (2017)CrossRef Haghshenas, M.: Mechanical characteristics of biodegradable magnesium matrix composites: a review. J. Magnes. Alloy 5, 189–201 (2017)CrossRef
131.
Zurück zum Zitat Gu, X.-N., Zheng, Y.-F.: A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. China 4, 111–115 (2010)CrossRef Gu, X.-N., Zheng, Y.-F.: A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. China 4, 111–115 (2010)CrossRef
132.
Zurück zum Zitat Feng, A., Han, Y.: The microstructure, mechanical and corrosion properties of calcium polyphosphate reinforced ZK60A magnesium alloy composites. J. Alloys Compd. 504, 585–593 (2010)CrossRef Feng, A., Han, Y.: The microstructure, mechanical and corrosion properties of calcium polyphosphate reinforced ZK60A magnesium alloy composites. J. Alloys Compd. 504, 585–593 (2010)CrossRef
133.
Zurück zum Zitat Razavi, M., Fathi, M.H., Meratian, M.: Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Mater. Sci. Eng. A 527, 6938–6944 (2010)CrossRef Razavi, M., Fathi, M.H., Meratian, M.: Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Mater. Sci. Eng. A 527, 6938–6944 (2010)CrossRef
134.
Zurück zum Zitat Gu, X.N., et al.: Microstructure and characteristics of the metal–ceramic composite (MgCa‐HA/TCP) fabricated by liquid metal infiltration. J. Biomed. Mater. Res. Part B Appl. Biomater. 99B, 127–134 (2011) Gu, X.N., et al.: Microstructure and characteristics of the metal–ceramic composite (MgCa‐HA/TCP) fabricated by liquid metal infiltration. J. Biomed. Mater. Res. Part B Appl. Biomater. 99B, 127–134 (2011)
135.
Zurück zum Zitat Huan, Z.G., Leeflang, M.A., Zhou, J., Duszczyk, J.: ZK30-bioactive glass composites for orthopedic applications: a comparative study on fabrication method and characteristics. Mater. Sci. Eng. B 176, 1644–1652 (2011)CrossRef Huan, Z.G., Leeflang, M.A., Zhou, J., Duszczyk, J.: ZK30-bioactive glass composites for orthopedic applications: a comparative study on fabrication method and characteristics. Mater. Sci. Eng. B 176, 1644–1652 (2011)CrossRef
136.
Zurück zum Zitat Lei, T., Tang, W., Cai, S.-H., Feng, F.-F., Li, N.-F.: On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction. Corros. Sci. 54, 270–277 (2012)CrossRef Lei, T., Tang, W., Cai, S.-H., Feng, F.-F., Li, N.-F.: On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction. Corros. Sci. 54, 270–277 (2012)CrossRef
137.
Zurück zum Zitat Salleh, E.M., Zuhailawati, H., Mohd Noor, S.N.F., Othman, N.K.: In vitro biodegradation and mechanical properties of Mg–Zn Alloy and Mg–Zn-hydroxyapatite composite produced by mechanical alloying for potential application in bone repair. Metall. Mater. Trans. A. 49, 5888–5903 (2018) Salleh, E.M., Zuhailawati, H., Mohd Noor, S.N.F., Othman, N.K.: In vitro biodegradation and mechanical properties of Mg–Zn Alloy and Mg–Zn-hydroxyapatite composite produced by mechanical alloying for potential application in bone repair. Metall. Mater. Trans. A. 49, 5888–5903 (2018)
138.
Zurück zum Zitat Grewal, N.S., Sharma, G.K., Kumar, K., Batra, U.: Thermally and mechanically tuned interfaces of magnesium alloys for bioimplant applications. Surf. Interfaces 41, 103284 (2023)CrossRef Grewal, N.S., Sharma, G.K., Kumar, K., Batra, U.: Thermally and mechanically tuned interfaces of magnesium alloys for bioimplant applications. Surf. Interfaces 41, 103284 (2023)CrossRef
139.
Zurück zum Zitat Sunil, B.R., Ganapathy, C., Sampath Kumar, T.S., Chakkingal, U.: Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants. J. Mech. Behavior Biomed. Mater. 40, 178–189 (2014) Sunil, B.R., Ganapathy, C., Sampath Kumar, T.S., Chakkingal, U.: Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants. J. Mech. Behavior Biomed. Mater. 40, 178–189 (2014)
140.
Zurück zum Zitat Viswanathan, R., et al.: Plasma electrolytic oxidation and characterization of spark plasma sintered magnesium/hydroxyapatite composites. Mater. Sci. Forum 765, 827–831 (2013)CrossRef Viswanathan, R., et al.: Plasma electrolytic oxidation and characterization of spark plasma sintered magnesium/hydroxyapatite composites. Mater. Sci. Forum 765, 827–831 (2013)CrossRef
141.
Zurück zum Zitat Xiong, G., et al.: Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Curr. Appl. Phys. 16, 830–836 (2016)CrossRef Xiong, G., et al.: Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Curr. Appl. Phys. 16, 830–836 (2016)CrossRef
142.
Zurück zum Zitat Iqbal, A.A., Ismail, N.B.: Mechanical properties and corrosion behavior of silica nanoparticle reinforced magnesium nanocomposite for bio-implant application. Materials (Basel) 15, 8164 (2022) Iqbal, A.A., Ismail, N.B.: Mechanical properties and corrosion behavior of silica nanoparticle reinforced magnesium nanocomposite for bio-implant application. Materials (Basel) 15, 8164 (2022)
143.
Zurück zum Zitat Yartys, V.A., et al.: Magnesium based materials for hydrogen based energy storage: past, present and future. Int. J. Hydrog. Energy 44, 7809–7859 (2019)CrossRef Yartys, V.A., et al.: Magnesium based materials for hydrogen based energy storage: past, present and future. Int. J. Hydrog. Energy 44, 7809–7859 (2019)CrossRef
144.
Zurück zum Zitat Ding, Z., Shaw, L.: Enhancement of hydrogen desorption from nanocomposite prepared by ball milling MgH2 with in situ aerosol spraying LiBH4. ACS Sustain. Chem. Eng. 7, 15064–15072 (2019)CrossRef Ding, Z., Shaw, L.: Enhancement of hydrogen desorption from nanocomposite prepared by ball milling MgH2 with in situ aerosol spraying LiBH4. ACS Sustain. Chem. Eng. 7, 15064–15072 (2019)CrossRef
145.
Zurück zum Zitat Thandalam, S.K., Ramanathan, S., Sundarrajan, S.: Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4) reinforced metal matrix composites (MMCs): a review. J. Mater. Res. Technol. 4, 333–347 (2015)CrossRef Thandalam, S.K., Ramanathan, S., Sundarrajan, S.: Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4) reinforced metal matrix composites (MMCs): a review. J. Mater. Res. Technol. 4, 333–347 (2015)CrossRef
146.
Zurück zum Zitat Sankhla, A., Patil, A., Kamila, H., Yassen, M., Farah, N., Mueller, E., de Boor, J.: Mechanical alloying of optimited Mg(2Si, Sn) solid solutions: understanding phase evolution and tuning synthesis parameters for thermoelectric applications. ACS Appl. Energy Mater. 1(2), 531–542 (2018)CrossRef Sankhla, A., Patil, A., Kamila, H., Yassen, M., Farah, N., Mueller, E., de Boor, J.: Mechanical alloying of optimited Mg(2Si, Sn) solid solutions: understanding phase evolution and tuning synthesis parameters for thermoelectric applications. ACS Appl. Energy Mater. 1(2), 531–542 (2018)CrossRef
Metadaten
Titel
Processing of Magnesium Alloys by Mechanical Alloying
verfasst von
Kumar Debajyoti Jena
Peng Cao
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6504-1_13

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.