Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2019

02.01.2019

Processing of Ultrafine-Grained Steels by Warm Rolling and Annealing

verfasst von: Ankita Bhattacharya, Anish Karmakar, Arnab Karani, Mainak Ghosh, Debalay Chakrabarti

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Low-carbon microalloyed steel was subjected to warm rolling followed by rapid transformation annealing (RTA) at 800-850 °C and subcritical annealing (SCA) at 600 °C to develop ultrafine ferrite grain structures (UFFG) with grain size less than 3 μm. The present study investigated the influence of light (40%) and heavy (80%) warm rolling deformation (LWR and HWR) applied during the finishing pass of two-pass rolling schedules on the microstructural evolution after rolling and subsequent annealing treatments. RTA treatment of HWR sample at a lower intercritical temperature for an optimum duration (800 °C, 30 s) developed UFFG-martensite dual-phase structure that offered the best combination of strength (YS ~ 900 MPa and UTS ~ 1200 MPa) and ductility (25% elongation). The SCA treatment provided sufficient time to achieve a uniform distribution of carbide particles throughout the ferrite matrix. SCA treatment of HWR at 600 °C for 4 h developed UFFG-carbide structure achieving YS of 800 MPa with 20% ductility. The SCA of LWR resulted in coarser ferrite grain structures (grain size > 5 μm) having higher ductility (more than 30%) but lower strength (UTS of 400-550 MPa) as compared to RTA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Karmakar, M. Mandal, A. Mandal, M. Basiruddin Sk, S. Mukherjee, and D. Chakrabarti, Effect of Starting Microstructure on the Grain Refinement in Cold-Rolled Low-Carbon Steel During Annealing at Two Different Heating Rates, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, 47(1), p 268–281CrossRef A. Karmakar, M. Mandal, A. Mandal, M. Basiruddin Sk, S. Mukherjee, and D. Chakrabarti, Effect of Starting Microstructure on the Grain Refinement in Cold-Rolled Low-Carbon Steel During Annealing at Two Different Heating Rates, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, 47(1), p 268–281CrossRef
2.
Zurück zum Zitat K.-T. Park, Y.K. Lee, and D.H. Shin, Fabrication of Ultrafine Grained Ferrite/Martensite Dual Phase Steel by Severe Plastic Deformation, ISIJ Int., 2005, 45(5), p 750–755CrossRef K.-T. Park, Y.K. Lee, and D.H. Shin, Fabrication of Ultrafine Grained Ferrite/Martensite Dual Phase Steel by Severe Plastic Deformation, ISIJ Int., 2005, 45(5), p 750–755CrossRef
3.
Zurück zum Zitat Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.J. Fecht, The Mechanism of Formation of Nanostructure and Dissolution of Cementite in a Pearlitic Steel During High Pressure Torsion, Acta Mater., 2003, 51(18), p 5555–5570CrossRef Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.J. Fecht, The Mechanism of Formation of Nanostructure and Dissolution of Cementite in a Pearlitic Steel During High Pressure Torsion, Acta Mater., 2003, 51(18), p 5555–5570CrossRef
4.
Zurück zum Zitat A. Karmakar, R.D.K. Misra, S. Neogy, and D. Chakrabarti, Development of Ultrafine-Grained Dual-Phase Steels: Mechanism of Grain Refinement During Intercritical Deformation, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(9), p 4106–4118CrossRef A. Karmakar, R.D.K. Misra, S. Neogy, and D. Chakrabarti, Development of Ultrafine-Grained Dual-Phase Steels: Mechanism of Grain Refinement During Intercritical Deformation, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(9), p 4106–4118CrossRef
5.
Zurück zum Zitat R. Song, D. Ponge, and D. Raabe, Improvement of the Work Hardening Rate of Ultrafine Grained Steels Through Second Phase Particles, Scr. Mater., 2005, 52(11), p 1075–1080CrossRef R. Song, D. Ponge, and D. Raabe, Improvement of the Work Hardening Rate of Ultrafine Grained Steels Through Second Phase Particles, Scr. Mater., 2005, 52(11), p 1075–1080CrossRef
6.
Zurück zum Zitat A. Karmakar, S. Sivaprasad, S.K. Nath, R.D.K. Misra, and D. Chakrabarti, Comparison Between Different Processing Schedules for the Development of Ultrafine-Grained Dual-Phase Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, 45(5), p 2466–2479CrossRef A. Karmakar, S. Sivaprasad, S.K. Nath, R.D.K. Misra, and D. Chakrabarti, Comparison Between Different Processing Schedules for the Development of Ultrafine-Grained Dual-Phase Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, 45(5), p 2466–2479CrossRef
7.
Zurück zum Zitat L. Lv, L. Fu, Y. Sun, and A. Shan, An Investigation on the Microstructure and Mechanical Properties in an Ultrafine Lamellar Martensitic Steel Processed by Heavy Warm Rolling and Tempering, Mater. Sci. Eng. A, 2018, 731, p 369–376CrossRef L. Lv, L. Fu, Y. Sun, and A. Shan, An Investigation on the Microstructure and Mechanical Properties in an Ultrafine Lamellar Martensitic Steel Processed by Heavy Warm Rolling and Tempering, Mater. Sci. Eng. A, 2018, 731, p 369–376CrossRef
8.
Zurück zum Zitat L. Lv, L. Fu, S. Ahmad, and A. Shan, Effect of Heavy Warm Rolling on Microstructures and Mechanical Properties of AISI, 4140 Steel, Mater. Sci. Eng. A, 2017, 704, p 469–479CrossRef L. Lv, L. Fu, S. Ahmad, and A. Shan, Effect of Heavy Warm Rolling on Microstructures and Mechanical Properties of AISI, 4140 Steel, Mater. Sci. Eng. A, 2017, 704, p 469–479CrossRef
9.
Zurück zum Zitat L. Sanz, B. Pereda, and B. López, Effect of Thermomechanical Treatment and Coiling Temperature on the Strengthening Mechanisms of Low Carbon Steels Microalloyed with Nb, Mater. Sci. Eng. A, 2016, 685(November 2016), p 377–390 L. Sanz, B. Pereda, and B. López, Effect of Thermomechanical Treatment and Coiling Temperature on the Strengthening Mechanisms of Low Carbon Steels Microalloyed with Nb, Mater. Sci. Eng. A, 2016, 685(November 2016), p 377–390
10.
Zurück zum Zitat L. Cheng, Y. Chen, Q. Cai, W. Yu, G. Han, E. Dong, and X. Li, Precipitation Enhanced Ultragrain Refinement of Ti-Mo Microalloyed Ferritic Steel During Warm Rolling, Mater. Sci. Eng. A, 2017, 698(May), p 117–125CrossRef L. Cheng, Y. Chen, Q. Cai, W. Yu, G. Han, E. Dong, and X. Li, Precipitation Enhanced Ultragrain Refinement of Ti-Mo Microalloyed Ferritic Steel During Warm Rolling, Mater. Sci. Eng. A, 2017, 698(May), p 117–125CrossRef
11.
Zurück zum Zitat G.K. Mandal, S.S. Das, T. Kumar, A. Kamaraj, K. Mondal, and V.C. Srivastava, Role of Precipitates in Recrystallization Mechanisms of Nb-Mo Microalloyed Steel, J. Mater. Eng. Perform., 2018, (Ref 15). G.K. Mandal, S.S. Das, T. Kumar, A. Kamaraj, K. Mondal, and V.C. Srivastava, Role of Precipitates in Recrystallization Mechanisms of Nb-Mo Microalloyed Steel, J. Mater. Eng. Perform., 2018, (Ref 15).
12.
Zurück zum Zitat Y. Mehta, S.K. Rajput, G.P. Chaudhari, and V.V. Dabhade, Dynamic Recrystallization and Grain Refinement of Fe-P-C-Si and Fe-P-C-Si-N Steels, J. Mater. Eng. Perform., 2018, 27(9), p 4770–4782CrossRef Y. Mehta, S.K. Rajput, G.P. Chaudhari, and V.V. Dabhade, Dynamic Recrystallization and Grain Refinement of Fe-P-C-Si and Fe-P-C-Si-N Steels, J. Mater. Eng. Perform., 2018, 27(9), p 4770–4782CrossRef
13.
Zurück zum Zitat W. Shen, C. Zhang, L. Zhang, Q. Xu, and Y. Cui, Experimental Study on the Hot Deformation Characterization of Low-Carbon Nb-V-Ti Microalloyed Steel, J. Mater. Eng. Perform., 2018, 27(9), p 4616–4624CrossRef W. Shen, C. Zhang, L. Zhang, Q. Xu, and Y. Cui, Experimental Study on the Hot Deformation Characterization of Low-Carbon Nb-V-Ti Microalloyed Steel, J. Mater. Eng. Perform., 2018, 27(9), p 4616–4624CrossRef
14.
Zurück zum Zitat R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi, Ultragrain Refinement of Plain Low Carbon Steel by Cold-Rolling and Annealing of Martensite, Acta Mater., 2002, 50(16), p 4177–4189CrossRef R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi, Ultragrain Refinement of Plain Low Carbon Steel by Cold-Rolling and Annealing of Martensite, Acta Mater., 2002, 50(16), p 4177–4189CrossRef
15.
Zurück zum Zitat X. Zhao, T.F. Jing, Y.W. Gao, G.Y. Qiao, J.F. Zhou, and W. Wang, Annealing Behavior of Nano-Layered Steel Produced by Heavy Cold-Rolling of Lath Martensite, Mater. Sci. Eng. A, 2005, 397(1-2), p 117–121CrossRef X. Zhao, T.F. Jing, Y.W. Gao, G.Y. Qiao, J.F. Zhou, and W. Wang, Annealing Behavior of Nano-Layered Steel Produced by Heavy Cold-Rolling of Lath Martensite, Mater. Sci. Eng. A, 2005, 397(1-2), p 117–121CrossRef
16.
Zurück zum Zitat S.M. Hasan, A. Haldar, and D. Chakrabarti, Microstructure and Mechanical Property of Cold Rolled Low Carbon Steel After Prolonged Annealing Treatment, Mater. Sci. Technol., 2012, 28(7), p 823–828CrossRef S.M. Hasan, A. Haldar, and D. Chakrabarti, Microstructure and Mechanical Property of Cold Rolled Low Carbon Steel After Prolonged Annealing Treatment, Mater. Sci. Technol., 2012, 28(7), p 823–828CrossRef
17.
Zurück zum Zitat C. Lesch, P. Álvarez, W. Bleck, and J. Gil Sevillano, Rapid Transformation Annealing: A Novel Method for Grain Refinement of Cold-Rolled Low-Carbon Steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, 38(9), p 1882–1890CrossRef C. Lesch, P. Álvarez, W. Bleck, and J. Gil Sevillano, Rapid Transformation Annealing: A Novel Method for Grain Refinement of Cold-Rolled Low-Carbon Steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, 38(9), p 1882–1890CrossRef
18.
Zurück zum Zitat P. Álvarez, C. Lesch, W. Bleck, H. Petitgand, J. Schöttler, and J. Gil Sevillano, Grain Refinement by Rapid Transformation Annealing of Cold Rolled Low Carbon Steels, Mater. Sci. Forum, 2005, 500-501, p 771–778CrossRef P. Álvarez, C. Lesch, W. Bleck, H. Petitgand, J. Schöttler, and J. Gil Sevillano, Grain Refinement by Rapid Transformation Annealing of Cold Rolled Low Carbon Steels, Mater. Sci. Forum, 2005, 500-501, p 771–778CrossRef
19.
Zurück zum Zitat V. Andrade-Carozzo and P.J. Jacques, Interactions Between Recrystallisation and Phase Transformations During Annealing of Cold Rolled Nb-Added TRIP-Aided Steels, Mater. Sci. Forum, 2007, 539-543, p 4649–4654CrossRef V. Andrade-Carozzo and P.J. Jacques, Interactions Between Recrystallisation and Phase Transformations During Annealing of Cold Rolled Nb-Added TRIP-Aided Steels, Mater. Sci. Forum, 2007, 539-543, p 4649–4654CrossRef
20.
Zurück zum Zitat X. Wang, R. Ding, J. He, A. Zhao, and R. Liu, Ultrafine-Grained Multiphase Steels with Different Microstructural Constitutions Fabricated Through Annealing of Tempered and Deformed Martensite, Metall. Mater. Trans. A, 2018, 49(5), p 1439–1443CrossRef X. Wang, R. Ding, J. He, A. Zhao, and R. Liu, Ultrafine-Grained Multiphase Steels with Different Microstructural Constitutions Fabricated Through Annealing of Tempered and Deformed Martensite, Metall. Mater. Trans. A, 2018, 49(5), p 1439–1443CrossRef
21.
Zurück zum Zitat C. Prasad, P. Bhuyan, C. Kaithwas, R. Saha, and S. Mandal, Microstructure Engineering by Dispersing Nano-Spheroid Cementite in Ultrafine-Grained Ferrite and Its Implications on Strength-Ductility Relationship in High Carbon Steel, Mater. Des., 2018, 139, p 324–335CrossRef C. Prasad, P. Bhuyan, C. Kaithwas, R. Saha, and S. Mandal, Microstructure Engineering by Dispersing Nano-Spheroid Cementite in Ultrafine-Grained Ferrite and Its Implications on Strength-Ductility Relationship in High Carbon Steel, Mater. Des., 2018, 139, p 324–335CrossRef
22.
Zurück zum Zitat C. Zheng and L. Li, Mechanical Behavior of Ultrafine-Grained Eutectoid Steel Containing Nano-Cementite Particles, Mater. Sci. Eng. A, 2018, 713, p 35–42CrossRef C. Zheng and L. Li, Mechanical Behavior of Ultrafine-Grained Eutectoid Steel Containing Nano-Cementite Particles, Mater. Sci. Eng. A, 2018, 713, p 35–42CrossRef
23.
Zurück zum Zitat V. Torganchuk, D.A. Molodov, A. Belyakov, and R. Kaibyshev, Microstructure and Mechanical Properties of an Ultrafine Grained Medium-Mn Steel, Defect Diffus. Forum, 2018, 385, p 308–313CrossRef V. Torganchuk, D.A. Molodov, A. Belyakov, and R. Kaibyshev, Microstructure and Mechanical Properties of an Ultrafine Grained Medium-Mn Steel, Defect Diffus. Forum, 2018, 385, p 308–313CrossRef
24.
Zurück zum Zitat R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained Bcc Steels, Mater. Sci. Eng. A, 2006, 441(1-2), p 1–17CrossRef R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained Bcc Steels, Mater. Sci. Eng. A, 2006, 441(1-2), p 1–17CrossRef
25.
Zurück zum Zitat T. Lolla, G. Cola, B. Narayanan, B. Alexandrov, and S.S. Babu, Development of Rapid Heating and Cooling (Flash Processing) Process to Produce Advanced High Strength Steel Microstructures, Mater. Sci. Technol., 2011, 27(5), p 863–875CrossRef T. Lolla, G. Cola, B. Narayanan, B. Alexandrov, and S.S. Babu, Development of Rapid Heating and Cooling (Flash Processing) Process to Produce Advanced High Strength Steel Microstructures, Mater. Sci. Technol., 2011, 27(5), p 863–875CrossRef
26.
Zurück zum Zitat A. Karmakar, M. Ghosh, and D. Chakrabarti, Cold-Rolling and Inter-Critical Annealing of Low-Carbon Steel: Effect of Initial Microstructure and Heating-Rate, Mater. Sci. Eng. A, 2013, 564, p 389–399CrossRef A. Karmakar, M. Ghosh, and D. Chakrabarti, Cold-Rolling and Inter-Critical Annealing of Low-Carbon Steel: Effect of Initial Microstructure and Heating-Rate, Mater. Sci. Eng. A, 2013, 564, p 389–399CrossRef
27.
Zurück zum Zitat A. Chbihi, D. Barbier, L. Germain, A. Hazotte, and M. Gouné, Interactions Between Ferrite Recrystallization and Austenite Formation in High-Strength Steels, J. Mater. Sci., 2014, 49(10), p 3608–3621CrossRef A. Chbihi, D. Barbier, L. Germain, A. Hazotte, and M. Gouné, Interactions Between Ferrite Recrystallization and Austenite Formation in High-Strength Steels, J. Mater. Sci., 2014, 49(10), p 3608–3621CrossRef
28.
Zurück zum Zitat C. Zheng and D. Raabe, Interaction between Recrystallization and Phase Transformation During Intercritical Annealing in a Cold-Rolled Dual-Phase Steel: A Cellular Automaton Model, Acta Mater., 2013, 61(14), p 5504–5517CrossRef C. Zheng and D. Raabe, Interaction between Recrystallization and Phase Transformation During Intercritical Annealing in a Cold-Rolled Dual-Phase Steel: A Cellular Automaton Model, Acta Mater., 2013, 61(14), p 5504–5517CrossRef
29.
Zurück zum Zitat J. Han and Y.-K. Lee, The Effects of the Heating Rate on the Reverse Transformation Mechanism and the Phase Stability of Reverted Austenite in Medium Mn Steels, Acta Mater., 2014, 67, p 354–361CrossRef J. Han and Y.-K. Lee, The Effects of the Heating Rate on the Reverse Transformation Mechanism and the Phase Stability of Reverted Austenite in Medium Mn Steels, Acta Mater., 2014, 67, p 354–361CrossRef
30.
Zurück zum Zitat N. Tsuji, R. Ueji, and Y. Saito, A Novel Process to Obtain Nanostructured Low-Carbon Bulky Steel with High Strength, Procedeeing of the 22nd RISO International Symposium on Materials Science, RISO National Laboratory, Denmark, 2001, p 407–415 N. Tsuji, R. Ueji, and Y. Saito, A Novel Process to Obtain Nanostructured Low-Carbon Bulky Steel with High Strength, Procedeeing of the 22nd RISO International Symposium on Materials Science, RISO National Laboratory, Denmark, 2001, p 407–415
31.
Zurück zum Zitat N. Tsuji, R. Ueji, Y. Minamino, and Y. Saito, A New and Simple Process to Obtain Nano-Structured Bulk Low-Carbon Steel with Superior Mechanical Property, Scr. Mater., 2002, 46(4), p 305–310CrossRef N. Tsuji, R. Ueji, Y. Minamino, and Y. Saito, A New and Simple Process to Obtain Nano-Structured Bulk Low-Carbon Steel with Superior Mechanical Property, Scr. Mater., 2002, 46(4), p 305–310CrossRef
32.
Zurück zum Zitat K. Hase and N. Tsuji, Effect of Initial Microstructure on Ultrafine Grain Formation Through Warm Deformation in Medium-Carbon Steels, Scr. Mater., 2011, 65(5), p 404–407CrossRef K. Hase and N. Tsuji, Effect of Initial Microstructure on Ultrafine Grain Formation Through Warm Deformation in Medium-Carbon Steels, Scr. Mater., 2011, 65(5), p 404–407CrossRef
33.
Zurück zum Zitat A. Karmakar, A. Karani, S. Patra, and D. Chakrabarti, Development of Bimodal Ferrite-Grain Structures in Low-Carbon Steel Using Rapid Intercritical Annealing, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(5), p 2041–2052CrossRef A. Karmakar, A. Karani, S. Patra, and D. Chakrabarti, Development of Bimodal Ferrite-Grain Structures in Low-Carbon Steel Using Rapid Intercritical Annealing, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(5), p 2041–2052CrossRef
34.
Zurück zum Zitat I.B. Timokhina, A.I. Nosenkov, A.O. Humphreys, J.J. Jonas, and E.V. Pereloma, Effect of Alloying Elements on the Microstructure and Texture of Warm Rolled Steels, ISIJ Int., 2004, 44(4), p 717–724CrossRef I.B. Timokhina, A.I. Nosenkov, A.O. Humphreys, J.J. Jonas, and E.V. Pereloma, Effect of Alloying Elements on the Microstructure and Texture of Warm Rolled Steels, ISIJ Int., 2004, 44(4), p 717–724CrossRef
35.
Zurück zum Zitat D.L. Bourell and O.D. Sherby, Ductility Improvement of a Low-Carbon Steel By Warm Rolling and Annealing, Metall. Trans. A Phys. Metall. Mater. Sci., 1981, 12 A(1), p 140–142CrossRef D.L. Bourell and O.D. Sherby, Ductility Improvement of a Low-Carbon Steel By Warm Rolling and Annealing, Metall. Trans. A Phys. Metall. Mater. Sci., 1981, 12 A(1), p 140–142CrossRef
36.
Zurück zum Zitat M. Calcagnotto, D. Ponge, and D. Raabe, Ultrafine Grained Ferrite/Martensite Dual Phase Steel Fabricated by Large Strain Warm Deformation and Subsequent Intercritical Annealing, ISIJ Int., 2008, 48(8), p 1096–1101CrossRef M. Calcagnotto, D. Ponge, and D. Raabe, Ultrafine Grained Ferrite/Martensite Dual Phase Steel Fabricated by Large Strain Warm Deformation and Subsequent Intercritical Annealing, ISIJ Int., 2008, 48(8), p 1096–1101CrossRef
37.
Zurück zum Zitat M. Calcagnotto, D. Ponge, and D. Raabe, Effect of Grain Refinement to 1 μm on Strength and Toughness of Dual-Phase Steels, Mater. Sci. Eng. A, 2010, 527(29–30), p 7832–7840CrossRef M. Calcagnotto, D. Ponge, and D. Raabe, Effect of Grain Refinement to 1 μm on Strength and Toughness of Dual-Phase Steels, Mater. Sci. Eng. A, 2010, 527(29–30), p 7832–7840CrossRef
38.
Zurück zum Zitat M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59(2), p 658–670CrossRef M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59(2), p 658–670CrossRef
39.
Zurück zum Zitat J. Huang, W.J. Poole, and M. Militzer, Austenite Formation During Intercritical Annealing, Metall. Mater. Trans. A, 2004, 35(11), p 3363–3375CrossRef J. Huang, W.J. Poole, and M. Militzer, Austenite Formation During Intercritical Annealing, Metall. Mater. Trans. A, 2004, 35(11), p 3363–3375CrossRef
40.
Zurück zum Zitat K. Mukherjee, S.S. Hazra, and M. Militzer, Grain Refinement in Dual-Phase Steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2009, 40(9), p 2145–2159CrossRef K. Mukherjee, S.S. Hazra, and M. Militzer, Grain Refinement in Dual-Phase Steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2009, 40(9), p 2145–2159CrossRef
41.
Zurück zum Zitat H. Azizi-Alizamini, M. Militzer, and W.J. Poole, Formation of Ultrafine Grained Dual Phase Steels through Rapid Heating, ISIJ Int., 2011, 51(6), p 958–964CrossRef H. Azizi-Alizamini, M. Militzer, and W.J. Poole, Formation of Ultrafine Grained Dual Phase Steels through Rapid Heating, ISIJ Int., 2011, 51(6), p 958–964CrossRef
42.
Zurück zum Zitat ASTM E8/E8M - 16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2016 ASTM E8/E8M - 16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2016
43.
Zurück zum Zitat N. Tsuji, R. Ueji, and Y. Minamino, Nanoscale Crystallographic Analysis of Ultrafine Grained IF Steel Fabricated by ARB Process, Scr. Mater., 2002, 47(2), p 69–76CrossRef N. Tsuji, R. Ueji, and Y. Minamino, Nanoscale Crystallographic Analysis of Ultrafine Grained IF Steel Fabricated by ARB Process, Scr. Mater., 2002, 47(2), p 69–76CrossRef
44.
Zurück zum Zitat L. Storojeva, D. Ponge, R. Kaspar, and D. Raabe, Development of Microstructure and Texture of Medium Carbon Steel During Heavy Warm Deformation, Acta Mater., 2004, 52(8), p 2209–2220CrossRef L. Storojeva, D. Ponge, R. Kaspar, and D. Raabe, Development of Microstructure and Texture of Medium Carbon Steel During Heavy Warm Deformation, Acta Mater., 2004, 52(8), p 2209–2220CrossRef
45.
Zurück zum Zitat R. Song, D. Ponge, D. Raabe, and R. Kaspar, Microstructure and Crystallographic Texture of an Ultrafine Grained C-Mn Steel and Their Evolution During Warm Deformation and Annealing, Acta Mater., 2005, 53(3), p 845–858CrossRef R. Song, D. Ponge, D. Raabe, and R. Kaspar, Microstructure and Crystallographic Texture of an Ultrafine Grained C-Mn Steel and Their Evolution During Warm Deformation and Annealing, Acta Mater., 2005, 53(3), p 845–858CrossRef
46.
Zurück zum Zitat R.R. Mohanty, O.A. Girina, and N.M. Fonstein, Effect of Heating Rate on the Austenite Formation in Low-Carbon High-Strength Steels Annealed in the Intercritical Region, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2011, 42(12), p 3680–3690CrossRef R.R. Mohanty, O.A. Girina, and N.M. Fonstein, Effect of Heating Rate on the Austenite Formation in Low-Carbon High-Strength Steels Annealed in the Intercritical Region, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2011, 42(12), p 3680–3690CrossRef
47.
Zurück zum Zitat C.I. Garcia and A.J. DeArdo, Formation of Austenite in 1.5 Pct Mn Steels, Metall. Trans. A, 1981, 12(3), p 521–530CrossRef C.I. Garcia and A.J. DeArdo, Formation of Austenite in 1.5 Pct Mn Steels, Metall. Trans. A, 1981, 12(3), p 521–530CrossRef
48.
Zurück zum Zitat D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss, Ferrite Recrystallization and Austenite Formation in Cold-Rolled Intercritically Annealed Steel, Metall. Trans. A, 1985, 16(8), p 1385–1392CrossRef D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss, Ferrite Recrystallization and Austenite Formation in Cold-Rolled Intercritically Annealed Steel, Metall. Trans. A, 1985, 16(8), p 1385–1392CrossRef
49.
Zurück zum Zitat N. Peranio, Y.J. Li, F. Roters, and D. Raabe, Microstructure and Texture Evolution in Dual-Phase Steels: Competition Between Recovery, Recrystallization, and Phase Transformation, Mater. Sci. Eng. A, 2010, 527(16–17), p 4161–4168CrossRef N. Peranio, Y.J. Li, F. Roters, and D. Raabe, Microstructure and Texture Evolution in Dual-Phase Steels: Competition Between Recovery, Recrystallization, and Phase Transformation, Mater. Sci. Eng. A, 2010, 527(16–17), p 4161–4168CrossRef
50.
Zurück zum Zitat V. Massardier, A. Ngansop, D. Fabrègue, and J. Merlin, Identification of the Parameters Controlling the Grain Refinement of Ultra-Rapidly Annealed Low Carbon Al-Killed Steels, Mater. Sci. Eng. A, 2010, 527(21–22), p 5654–5663CrossRef V. Massardier, A. Ngansop, D. Fabrègue, and J. Merlin, Identification of the Parameters Controlling the Grain Refinement of Ultra-Rapidly Annealed Low Carbon Al-Killed Steels, Mater. Sci. Eng. A, 2010, 527(21–22), p 5654–5663CrossRef
51.
Zurück zum Zitat R.A. Oriani, Ostwald Ripening of Precipitates in Solid Matrices, Acta Metall., 1964, 12(12), p 1399–1409CrossRef R.A. Oriani, Ostwald Ripening of Precipitates in Solid Matrices, Acta Metall., 1964, 12(12), p 1399–1409CrossRef
52.
Zurück zum Zitat S.S. Sahay, A.M. Kumar, and A. Chatterjee, Development of Integrated Model for Batch Annealing of Cold Rolled Steels, Ironmak. Steelmak., 2004, 31(2), p 144–152CrossRef S.S. Sahay, A.M. Kumar, and A. Chatterjee, Development of Integrated Model for Batch Annealing of Cold Rolled Steels, Ironmak. Steelmak., 2004, 31(2), p 144–152CrossRef
53.
Zurück zum Zitat T.R. Malow and C.C. Koch, Grain Growth in Nanocrystalline Iron Prepared by Mechanical Attrition, Acta Mater., 1997, 45(5), p 2177–2186CrossRef T.R. Malow and C.C. Koch, Grain Growth in Nanocrystalline Iron Prepared by Mechanical Attrition, Acta Mater., 1997, 45(5), p 2177–2186CrossRef
Metadaten
Titel
Processing of Ultrafine-Grained Steels by Warm Rolling and Annealing
verfasst von
Ankita Bhattacharya
Anish Karmakar
Arnab Karani
Mainak Ghosh
Debalay Chakrabarti
Publikationsdatum
02.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3846-0

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Engineering and Performance 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.