Skip to main content

2024 | OriginalPaper | Buchkapitel

Product of Traces of Permuting n-Derivations on Prime and Semiprime Ideals of a Ring

verfasst von : Nazia Parveen

Erschienen in: Advances in Ring Theory and Applications

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we prove that if the product of the traces of two permuting n-derivations on a ring maps the ring into a prime ideal, then one of the traces maps the ring into the prime ideal. We will also extend the above result on the product of two or more traces under suitable characteristic restrictions. In fact, we proved that for a semiprime ideal \(\mathcal {P}\) of \(\mathcal {R}\), \(d^r(\mathcal {P})\subseteq \mathcal {P}\) if and only if \(d(\mathcal {P})\subseteq \mathcal {P}\) for any positive integer r.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ashraf, M.: On symmetric bi-derivations in rings. Rend. Istit. Math. Univ. Trieste 31(1–2), 25–36 (1999)MathSciNet Ashraf, M.: On symmetric bi-derivations in rings. Rend. Istit. Math. Univ. Trieste 31(1–2), 25–36 (1999)MathSciNet
2.
Zurück zum Zitat Ashraf, M., Parveen, N., Jamal, M.R.: Traces of permuting \(n\)-derivations and commutativity of rings. Southeast Asian Bull. Math. 38, 321–332 (2014)MathSciNet Ashraf, M., Parveen, N., Jamal, M.R.: Traces of permuting \(n\)-derivations and commutativity of rings. Southeast Asian Bull. Math. 38, 321–332 (2014)MathSciNet
3.
Zurück zum Zitat Ashraf, M., Parveen, N.: On skew centralizing traces of permuting \(n\)-additive mappings. Kyungpook Math. J. 55, 1–12 (2015)MathSciNetCrossRef Ashraf, M., Parveen, N.: On skew centralizing traces of permuting \(n\)-additive mappings. Kyungpook Math. J. 55, 1–12 (2015)MathSciNetCrossRef
4.
Zurück zum Zitat Ashraf, M., Rehman, N.: On derivation and commutativity in prime rings. East-West J. Math. 3(1), 87–91 (2001)MathSciNet Ashraf, M., Rehman, N.: On derivation and commutativity in prime rings. East-West J. Math. 3(1), 87–91 (2001)MathSciNet
6.
Zurück zum Zitat Bre\(\check{s}\)ar, M.: Commuting maps: a survey. Taiwanese J. Math. 3, 361–397 (2004) Bre\(\check{s}\)ar, M.: Commuting maps: a survey. Taiwanese J. Math. 3, 361–397 (2004)
8.
Zurück zum Zitat Creedon, T.: Derivations and prime ideals. Math. Proc. R. Ir. Acad. 98A(2), 223–225 (1998)MathSciNet Creedon, T.: Derivations and prime ideals. Math. Proc. R. Ir. Acad. 98A(2), 223–225 (1998)MathSciNet
9.
Zurück zum Zitat Daif, M.N., Bell, H.E.: Remarks on derivations on semiprime rings. Int. J. Math. Math. Sci. 15, 205–206 (1992)MathSciNetCrossRef Daif, M.N., Bell, H.E.: Remarks on derivations on semiprime rings. Int. J. Math. Math. Sci. 15, 205–206 (1992)MathSciNetCrossRef
10.
Zurück zum Zitat Herstein, I.N.: Topics in Ring Theory. University of Chicago Press, Chicago (1969) Herstein, I.N.: Topics in Ring Theory. University of Chicago Press, Chicago (1969)
11.
Zurück zum Zitat Maksa, G.: A remark on symmetric bi-additive functions having nonnegative diagonalization. Glasnik Math. 15, 279–282 (1980) Maksa, G.: A remark on symmetric bi-additive functions having nonnegative diagonalization. Glasnik Math. 15, 279–282 (1980)
12.
Zurück zum Zitat Maksa, G.: On the trace of symmetric biderivations. C.R. Math. Rep. Acad. Sci. Canada IX, 303–307 (1987) Maksa, G.: On the trace of symmetric biderivations. C.R. Math. Rep. Acad. Sci. Canada IX, 303–307 (1987)
13.
Zurück zum Zitat Ozturk, M.A.: Permuting tri-derivations in prime and semi-prime rings. East Asian Math. J. 15, 177–190 (1999) Ozturk, M.A.: Permuting tri-derivations in prime and semi-prime rings. East Asian Math. J. 15, 177–190 (1999)
14.
Zurück zum Zitat Ozturk, M.A., Jun, Y.B.: On trace of symmetric bi-derivations in near rings. Indian J. Pure Appl. Math. 17, 95–102 (2004) Ozturk, M.A., Jun, Y.B.: On trace of symmetric bi-derivations in near rings. Indian J. Pure Appl. Math. 17, 95–102 (2004)
15.
Zurück zum Zitat Palmer, T.W.: Banach Algebras and the General Theory of *-algebras. Cambridge University Press, Encyclopedia of Mathematics (1994)CrossRef Palmer, T.W.: Banach Algebras and the General Theory of *-algebras. Cambridge University Press, Encyclopedia of Mathematics (1994)CrossRef
16.
Zurück zum Zitat Park, K.H.: On prime and semiprime rings with symmetric n-derivations. J. Chungcheong Math. Soc. 22, 451–458 (2009) Park, K.H.: On prime and semiprime rings with symmetric n-derivations. J. Chungcheong Math. Soc. 22, 451–458 (2009)
17.
Zurück zum Zitat Park, K.H., Jung, Y.S.: On prime and semi-prime rings with permuting 3-derivations. Bull. Korean Math. Soc. 44, 789–794 (2007)MathSciNetCrossRef Park, K.H., Jung, Y.S.: On prime and semi-prime rings with permuting 3-derivations. Bull. Korean Math. Soc. 44, 789–794 (2007)MathSciNetCrossRef
18.
Zurück zum Zitat Parveen, N.: Product of traces of symmetric bi-derivations in rings. Palistine J. Math. 11(1), 210–216 (2022)MathSciNet Parveen, N.: Product of traces of symmetric bi-derivations in rings. Palistine J. Math. 11(1), 210–216 (2022)MathSciNet
20.
21.
Zurück zum Zitat Vukman, J.: Two results concerning symmetric bi-derivations on prime and semiprime rings. Aequationes Math. 40, 181–189 (1990)MathSciNetCrossRef Vukman, J.: Two results concerning symmetric bi-derivations on prime and semiprime rings. Aequationes Math. 40, 181–189 (1990)MathSciNetCrossRef
22.
Zurück zum Zitat Wang, Yu.: Symmetric bi-derivation of prime rings. J. Math. Res. Exposition 22, 503–504 (2002)MathSciNet Wang, Yu.: Symmetric bi-derivation of prime rings. J. Math. Res. Exposition 22, 503–504 (2002)MathSciNet
23.
Zurück zum Zitat Yazarli, H., \(\ddot{O}\)zt\(\ddot{u}\)rk, M.A., Jun, Y.B.: Tri additive maps and permuting tri-derivations. Comm. Fac. Sci. Univ. Ank. Ser. Al, Math. Stat. 54(1), 1–8 (2005) Yazarli, H., \(\ddot{O}\)zt\(\ddot{u}\)rk, M.A., Jun, Y.B.: Tri additive maps and permuting tri-derivations. Comm. Fac. Sci. Univ. Ank. Ser. Al, Math. Stat. 54(1), 1–8 (2005)
Metadaten
Titel
Product of Traces of Permuting n-Derivations on Prime and Semiprime Ideals of a Ring
verfasst von
Nazia Parveen
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-50795-3_28