Skip to main content
Erschienen in: Journal of Nanoparticle Research 8/2022

01.08.2022 | Review

Production and characteristics of nanocellulose obtained with using of ionic liquid and ultrasonication

verfasst von: Nurul Atikah Mohd Ishak, Fatimah Zahara Abdullah, Nurhidayatullaili Muhd Julkapli

Erschienen in: Journal of Nanoparticle Research | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dissolving of cellulose under harsh and environmentally unfavorable circumstances is the basis of traditional chemical methods for nanocellulose (NC) or derivatization. Due to the limitations of present methods for dissolving and processing NC, more efficient and ecologically acceptable solvents are required. Because of their excellent thermal and chemical stability, non-flammability, and miscibility with many other solvent systems, ionic liquids (ILs) have emerged as useful and environmentally friendly solvents. Meanwhile, another procedure for producing NC with homogeneous and extremely crystalline characteristics is ultra-sonification. Ultrasound energy is delivered to cellulose chains during ultrasonication by a process known as cavitation, which refers to the development, growth, and collapse of cavities in a liquid medium. Cavitation provides 10–100 kJ/mol of energy in this so-called sonochemistry, which is within the hydrogen bond energy scale. As a result, both catalytic IL treatments and ultrasonication influence the progressive disintegration of NC synthesis.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of NC: a review of available data and industrial applications. J Biomater Nanobiotechnol 4(2):1–24CrossRef Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of NC: a review of available data and industrial applications. J Biomater Nanobiotechnol 4(2):1–24CrossRef
2.
Zurück zum Zitat Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21:335–346CrossRef Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21:335–346CrossRef
3.
Zurück zum Zitat Ioelovich M (2012) Optimal conditions for isolation of nanocrystalline cellulose particles. Nanosci Nanotechnol 2:9–13CrossRef Ioelovich M (2012) Optimal conditions for isolation of nanocrystalline cellulose particles. Nanosci Nanotechnol 2:9–13CrossRef
4.
Zurück zum Zitat Brinchi L, Cotana F, Fortunati E, Kenny J (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94:154–169CrossRef Brinchi L, Cotana F, Fortunati E, Kenny J (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94:154–169CrossRef
5.
Zurück zum Zitat Khalil HA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665CrossRef Khalil HA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665CrossRef
6.
Zurück zum Zitat Torres FG, Commeaux S, Troncoso OP (2012) Biocompatibility of bacterial cellulose based biomaterials. J Funct Biomater 3:864–878CrossRef Torres FG, Commeaux S, Troncoso OP (2012) Biocompatibility of bacterial cellulose based biomaterials. J Funct Biomater 3:864–878CrossRef
7.
Zurück zum Zitat Peng BL, Dhar N, Liu H, Tam K (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206CrossRef Peng BL, Dhar N, Liu H, Tam K (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206CrossRef
8.
Zurück zum Zitat Wu Q, Meng Y, Wang S, Li Y, Fu S, Ma L, Harper D (2014) Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci 131(15):1–12 Wu Q, Meng Y, Wang S, Li Y, Fu S, Ma L, Harper D (2014) Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci 131(15):1–12
9.
Zurück zum Zitat Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17:21–27CrossRef Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17:21–27CrossRef
10.
Zurück zum Zitat De Souza Lima MM, Wong JT, Paillet M, Borsali R, Pecora R (2003) Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir 19:24–29CrossRef De Souza Lima MM, Wong JT, Paillet M, Borsali R, Pecora R (2003) Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir 19:24–29CrossRef
11.
Zurück zum Zitat Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F (2005) Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21:2034–2037CrossRef Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F (2005) Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21:2034–2037CrossRef
12.
Zurück zum Zitat Revol J-F (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohyd Polym 2:123–134CrossRef Revol J-F (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohyd Polym 2:123–134CrossRef
13.
Zurück zum Zitat Pranger L, Tannenbaum R (2008) Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay. Macromolecules 41:8682–8687CrossRef Pranger L, Tannenbaum R (2008) Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay. Macromolecules 41:8682–8687CrossRef
14.
Zurück zum Zitat Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65CrossRef Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65CrossRef
15.
Zurück zum Zitat Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054CrossRef Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054CrossRef
16.
Zurück zum Zitat Dufresne A, Cavaillé JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18:198–210CrossRef Dufresne A, Cavaillé JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18:198–210CrossRef
17.
Zurück zum Zitat Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohyd Polym 87:564–573CrossRef Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohyd Polym 87:564–573CrossRef
18.
Zurück zum Zitat Holilah H, Bahruji H, Ediati R, Asranudin A, Jalil AA, Piluharto B, Nugraha RE, Prasetyoko D (2022) Uniform rod and spherical nanocrystalline celluloses from hydrolysis of industrial pepper waste (Piper nigrum L.) using organic acid and inorganic acid. Int J Biol Macromol 204:593–605CrossRef Holilah H, Bahruji H, Ediati R, Asranudin A, Jalil AA, Piluharto B, Nugraha RE, Prasetyoko D (2022) Uniform rod and spherical nanocrystalline celluloses from hydrolysis of industrial pepper waste (Piper nigrum L.) using organic acid and inorganic acid. Int J Biol Macromol 204:593–605CrossRef
19.
Zurück zum Zitat Ilyas R, Sapuan S, Ishak M (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohyd Polym 181:1038–1051CrossRef Ilyas R, Sapuan S, Ishak M (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohyd Polym 181:1038–1051CrossRef
20.
Zurück zum Zitat Boschetti WTN, Carvalho AMML, de Càssia Oliveira Carneiro A, Vidaurre GB, Gomes FJB, Soratto DN (2021) Effect of mechanical treatment of eucalyptus pulp on the production of nanocrystalline and microcrystalline cellulose. Sustainability 13:5888 CrossRef Boschetti WTN, Carvalho AMML, de Càssia Oliveira Carneiro A, Vidaurre GB, Gomes FJB, Soratto DN (2021) Effect of mechanical treatment of eucalyptus pulp on the production of nanocrystalline and microcrystalline cellulose. Sustainability 13:5888 CrossRef
21.
Zurück zum Zitat Nuruddin A, Habibullah A, Adipratama MJ, Purwasasmita BS (2021) Synthesis of barium hexaferrite templated by nanocrystalline cellulose extracted from luffa acutangula fiber. Mater Res Express 8:066104CrossRef Nuruddin A, Habibullah A, Adipratama MJ, Purwasasmita BS (2021) Synthesis of barium hexaferrite templated by nanocrystalline cellulose extracted from luffa acutangula fiber. Mater Res Express 8:066104CrossRef
22.
Zurück zum Zitat Fortunati E, Puglia D, Monti M, Peponi L, Santulli C, Kenny J, Torre L (2013) Extraction of cellulose nanocrystals from Phormium tenax fibres. J Polym Environ 21:319–328CrossRef Fortunati E, Puglia D, Monti M, Peponi L, Santulli C, Kenny J, Torre L (2013) Extraction of cellulose nanocrystals from Phormium tenax fibres. J Polym Environ 21:319–328CrossRef
23.
Zurück zum Zitat Singh S, Varanasi P, Singh P, Adams PD, Auer M, Simmons BA (2013) Understanding the impact of ILs pretreatment on cellulose and lignin via thermochemical analysis. Biomass Bioenerg 54:276–283CrossRef Singh S, Varanasi P, Singh P, Adams PD, Auer M, Simmons BA (2013) Understanding the impact of ILs pretreatment on cellulose and lignin via thermochemical analysis. Biomass Bioenerg 54:276–283CrossRef
24.
Zurück zum Zitat Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRef Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRef
25.
Zurück zum Zitat Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohyd Polym 76:94–99CrossRef Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohyd Polym 76:94–99CrossRef
26.
27.
Zurück zum Zitat Morais JPS, de Freitas Rosa M, Dias Nascimento L, Magalhães do Nascimento D, Ribeiro Cassales A (2013) Extraction and characterization of NC structures from raw cotton linter. Carbohydr Polym 91:229–235 Morais JPS, de Freitas Rosa M, Dias Nascimento L, Magalhães do Nascimento D, Ribeiro Cassales A (2013) Extraction and characterization of NC structures from raw cotton linter. Carbohydr Polym 91:229–235
28.
Zurück zum Zitat Lamaming J, Hashim R, Leh CP, Sulaiman O (2017) Properties of cellulose nanocrystals from oil palm trunk isolated by total chlorine free method. Carbohyd Polym 156:409–416CrossRef Lamaming J, Hashim R, Leh CP, Sulaiman O (2017) Properties of cellulose nanocrystals from oil palm trunk isolated by total chlorine free method. Carbohyd Polym 156:409–416CrossRef
29.
Zurück zum Zitat Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated NC and their self-assembled structures. Carbohyd Polym 95:32–40CrossRef Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated NC and their self-assembled structures. Carbohyd Polym 95:32–40CrossRef
30.
Zurück zum Zitat Mishra SP, Manent A-S, Chabot B, Daneault C (2012) Production of NC from native cellulose–various options utilizing ultrasound. BioResources 7:0422–0436 Mishra SP, Manent A-S, Chabot B, Daneault C (2012) Production of NC from native cellulose–various options utilizing ultrasound. BioResources 7:0422–0436
31.
Zurück zum Zitat Xie J, Hse C-Y, Cornelis F, Hu T, Qi J, Shupe TF (2016) Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohyd Polym 151:725–734CrossRef Xie J, Hse C-Y, Cornelis F, Hu T, Qi J, Shupe TF (2016) Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohyd Polym 151:725–734CrossRef
32.
Zurück zum Zitat Liu C-F, Ren J-L, Xu F, Liu J-J, Sun J-X, Sun R-C (2006) Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J Agric Food Chem 54:5742–5748CrossRef Liu C-F, Ren J-L, Xu F, Liu J-J, Sun J-X, Sun R-C (2006) Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J Agric Food Chem 54:5742–5748CrossRef
33.
Zurück zum Zitat Hachaichi A, Kouini B, Kian LK, Asim M, Fouad H, Jawaid M, Sain M (2021) Nanocrystalline cellulose from microcrystalline cellulose of date palm fibers as a promising candidate for bio-nanocomposites: isolation and characterization. Materials 14:5313CrossRef Hachaichi A, Kouini B, Kian LK, Asim M, Fouad H, Jawaid M, Sain M (2021) Nanocrystalline cellulose from microcrystalline cellulose of date palm fibers as a promising candidate for bio-nanocomposites: isolation and characterization. Materials 14:5313CrossRef
34.
Zurück zum Zitat Doan TKQ, Chiang KY (2022) Characteristics and kinetics study of spherical cellulose nanocrystal extracted from cotton cloth waste by acid hydrolysis. Sustain Environ Res 32:1–14CrossRef Doan TKQ, Chiang KY (2022) Characteristics and kinetics study of spherical cellulose nanocrystal extracted from cotton cloth waste by acid hydrolysis. Sustain Environ Res 32:1–14CrossRef
35.
Zurück zum Zitat Ilyas R, Sapuan S, Atikah M, Asyraf M, Rafiqah SA, Aisyah H, Nurazzi NM, Norrrahim M (2021) Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Text Res J 91:152–167CrossRef Ilyas R, Sapuan S, Atikah M, Asyraf M, Rafiqah SA, Aisyah H, Nurazzi NM, Norrrahim M (2021) Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Text Res J 91:152–167CrossRef
36.
Zurück zum Zitat Tingaut P, Zimmermann T, Sèbe G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22:20105–20111CrossRef Tingaut P, Zimmermann T, Sèbe G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22:20105–20111CrossRef
37.
Zurück zum Zitat Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ILs pretreatment by XRD. Biores Technol 151:402–405CrossRef Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ILs pretreatment by XRD. Biores Technol 151:402–405CrossRef
38.
Zurück zum Zitat Rahman MBA, Ishak ZI, Abdullah DK, Aziz AA, Basri M, Salleh AB (2012) Swelling and dissolution of oil palm biomass in ILss. J Oil Palm Res 24:1267–1276 Rahman MBA, Ishak ZI, Abdullah DK, Aziz AA, Basri M, Salleh AB (2012) Swelling and dissolution of oil palm biomass in ILss. J Oil Palm Res 24:1267–1276
39.
Zurück zum Zitat Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ILss (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21CrossRef Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ILss (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21CrossRef
40.
Zurück zum Zitat Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN (2009) Regenerating cellulose from ILss for an accelerated enzymatic hydrolysis. J Biotechnol 139:47–54CrossRef Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN (2009) Regenerating cellulose from ILss for an accelerated enzymatic hydrolysis. J Biotechnol 139:47–54CrossRef
41.
Zurück zum Zitat Jurado E, Camacho F, Luzon G, Vicaria J (2006) Influence of the hollow-fibre membrane on the stability of β-galactosidase and on lactose hydrolysis: kinetic models including adsorption of the enzyme onto the membrane. Enzyme Microb Technol 39:1008–1015CrossRef Jurado E, Camacho F, Luzon G, Vicaria J (2006) Influence of the hollow-fibre membrane on the stability of β-galactosidase and on lactose hydrolysis: kinetic models including adsorption of the enzyme onto the membrane. Enzyme Microb Technol 39:1008–1015CrossRef
42.
Zurück zum Zitat Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ILss dissolving (ligno-) cellulose. Biores Technol 100:2580–2587CrossRef Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ILss dissolving (ligno-) cellulose. Biores Technol 100:2580–2587CrossRef
43.
44.
Zurück zum Zitat Rinaldi R, Schüth F (2009) Design of solid catalysts for the conversion of biomass. Energy Environ Sci 2:610–626CrossRef Rinaldi R, Schüth F (2009) Design of solid catalysts for the conversion of biomass. Energy Environ Sci 2:610–626CrossRef
45.
Zurück zum Zitat Zhang Q, Zhang S, Deng Y (2011) Recent advances in ILs catalysis. Green Chem 13:2619–2637CrossRef Zhang Q, Zhang S, Deng Y (2011) Recent advances in ILs catalysis. Green Chem 13:2619–2637CrossRef
46.
Zurück zum Zitat Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ILs: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRef Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ILs: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRef
47.
Zurück zum Zitat Feng L, Chen Z-L (2008) Research progress on dissolution and functional modification of cellulose in ILss. J Mol Liq 142:1–5CrossRef Feng L, Chen Z-L (2008) Research progress on dissolution and functional modification of cellulose in ILss. J Mol Liq 142:1–5CrossRef
48.
Zurück zum Zitat Shi J, Gao H, Xia Y, Li W, Wang H, Zheng C (2013) Efficient process for the direct transformation of cellulose and carbohydrates to 5-(hydroxymenthyl) furfural with dual-core sulfonic acid ILss and co-catalysts. RSC Adv 3:7782–7790CrossRef Shi J, Gao H, Xia Y, Li W, Wang H, Zheng C (2013) Efficient process for the direct transformation of cellulose and carbohydrates to 5-(hydroxymenthyl) furfural with dual-core sulfonic acid ILss and co-catalysts. RSC Adv 3:7782–7790CrossRef
49.
Zurück zum Zitat Olivier-Bourbigou H, Magna L, Morvan D (2010) ILss and catalysis: recent progress from knowledge to applications. Appl Catal A 373:1–56CrossRef Olivier-Bourbigou H, Magna L, Morvan D (2010) ILss and catalysis: recent progress from knowledge to applications. Appl Catal A 373:1–56CrossRef
50.
Zurück zum Zitat Cheng J-Y, Chu Y-H (2006) 1-Butyl-2, 3-trimethyleneimidazolium bis (trifluoromethylsulfonyl) imide ([b-3C-im][NTf2]): a new, stable ILs. Tetrahedron Lett 47:1575–1579CrossRef Cheng J-Y, Chu Y-H (2006) 1-Butyl-2, 3-trimethyleneimidazolium bis (trifluoromethylsulfonyl) imide ([b-3C-im][NTf2]): a new, stable ILs. Tetrahedron Lett 47:1575–1579CrossRef
51.
Zurück zum Zitat Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formates. Biomacromol 7:3295–3297CrossRef Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formates. Biomacromol 7:3295–3297CrossRef
52.
Zurück zum Zitat Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ILss. J Am Chem Soc 124:4974–4975CrossRef Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ILss. J Am Chem Soc 124:4974–4975CrossRef
53.
Zurück zum Zitat Montalbo-Lomboy M, Grewell D (2015) Rapid dissolution of switchgrass in 1-butyl-3-methylimidazolium chloride by ultrasonication. Ultrason Sonochem 22:588–599CrossRef Montalbo-Lomboy M, Grewell D (2015) Rapid dissolution of switchgrass in 1-butyl-3-methylimidazolium chloride by ultrasonication. Ultrason Sonochem 22:588–599CrossRef
54.
Zurück zum Zitat Gupta KM, Jiang J (2015) Cellulose dissolution and regeneration in ILss: a computational perspective. Chem Eng Sci 121:180–189CrossRef Gupta KM, Jiang J (2015) Cellulose dissolution and regeneration in ILss: a computational perspective. Chem Eng Sci 121:180–189CrossRef
55.
Zurück zum Zitat Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ILss. Cellulose 15:59–66CrossRef Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ILss. Cellulose 15:59–66CrossRef
56.
Zurück zum Zitat Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D (2008) Designing enzyme-compatible ILss that can dissolve carbohydrates. Green Chem 10:696–705CrossRef Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D (2008) Designing enzyme-compatible ILss that can dissolve carbohydrates. Green Chem 10:696–705CrossRef
57.
Zurück zum Zitat Heinze T, Schwikal K, Barthel S (2005) ILss as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525CrossRef Heinze T, Schwikal K, Barthel S (2005) ILss as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525CrossRef
58.
Zurück zum Zitat Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ILss. Green Chem 11:417–424CrossRef Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ILss. Green Chem 11:417–424CrossRef
59.
Zurück zum Zitat Kosan B, Michels C, Meister F (2007) Dissolution and forming of cellulose with ILss. Cellulose 15:59–66CrossRef Kosan B, Michels C, Meister F (2007) Dissolution and forming of cellulose with ILss. Cellulose 15:59–66CrossRef
60.
Zurück zum Zitat Wendler F, Todi L-N, Meister F (2012) Thermostability of imidazolium ILss as direct solvents for cellulose. Thermochim Acta 528:76–84CrossRef Wendler F, Todi L-N, Meister F (2012) Thermostability of imidazolium ILss as direct solvents for cellulose. Thermochim Acta 528:76–84CrossRef
61.
Zurück zum Zitat Liu Y, Xiao W, Xia S, Ma P (2013) SO3H-functionalized acidic ILss as catalysts for the hydrolysis of cellulose. Carbohyd Polym 92:218–222CrossRef Liu Y, Xiao W, Xia S, Ma P (2013) SO3H-functionalized acidic ILss as catalysts for the hydrolysis of cellulose. Carbohyd Polym 92:218–222CrossRef
62.
Zurück zum Zitat Brehm M, Radicke J, Pulst M, Shaabani F, Sebastiani D, Kressler J (2020) Dissolving cellulose in 1, 2, 3-triazolium-and imidazolium-based ILss with aromatic anions. Molecules 25:3539CrossRef Brehm M, Radicke J, Pulst M, Shaabani F, Sebastiani D, Kressler J (2020) Dissolving cellulose in 1, 2, 3-triazolium-and imidazolium-based ILss with aromatic anions. Molecules 25:3539CrossRef
63.
Zurück zum Zitat Ma K, Jin X, Zheng M, Gao H (2021) Dissolution and functionalization of celluloses using 1, 2, 3-triazolium ILs. Carbohydr Polym Techno Appl 2:100109 Ma K, Jin X, Zheng M, Gao H (2021) Dissolution and functionalization of celluloses using 1, 2, 3-triazolium ILs. Carbohydr Polym Techno Appl 2:100109
64.
Zurück zum Zitat Xu A, Zhang Y, Zhao Y, Wang J (2013) Cellulose dissolution at ambient temperature: Role of preferential solvation of cations of ILss by a cosolvent. Carbohyd Polym 92:540–544CrossRef Xu A, Zhang Y, Zhao Y, Wang J (2013) Cellulose dissolution at ambient temperature: Role of preferential solvation of cations of ILss by a cosolvent. Carbohyd Polym 92:540–544CrossRef
65.
Zurück zum Zitat Protz R, Lehmann A, Bohrisch J, Ganster J, Fink H-P (2021) Solubility and spinnability of cellulose-lignin blends in specific ILss. Carbohyd Polym Technol Appl 2:100041 Protz R, Lehmann A, Bohrisch J, Ganster J, Fink H-P (2021) Solubility and spinnability of cellulose-lignin blends in specific ILss. Carbohyd Polym Technol Appl 2:100041
66.
Zurück zum Zitat Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ILs 1-n-butyl-3-methylimidazolium chloride: a 13 C and 35/37 Cl NMR relaxation study on model systems. Chem Comm 12:1271–1273CrossRef Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ILs 1-n-butyl-3-methylimidazolium chloride: a 13 C and 35/37 Cl NMR relaxation study on model systems. Chem Comm 12:1271–1273CrossRef
67.
Zurück zum Zitat Tan HT, Lee KT (2012) Understanding the impact of ILs pretreatment on biomass and enzymatic hydrolysis. Chem Eng J 183:448–458CrossRef Tan HT, Lee KT (2012) Understanding the impact of ILs pretreatment on biomass and enzymatic hydrolysis. Chem Eng J 183:448–458CrossRef
68.
Zurück zum Zitat Ohno H, Fukaya Y (2009) Task specific ILss for cellulose technology. Chem Lett 38:2–7CrossRef Ohno H, Fukaya Y (2009) Task specific ILss for cellulose technology. Chem Lett 38:2–7CrossRef
69.
Zurück zum Zitat Guo H, Qi X, Li L, Smith RL Jr (2012) Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ILs. Biores Technol 116:355–359CrossRef Guo H, Qi X, Li L, Smith RL Jr (2012) Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ILs. Biores Technol 116:355–359CrossRef
70.
Zurück zum Zitat Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ILss and its application: a mini-review. Green Chem 8:325–327CrossRef Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ILss and its application: a mini-review. Green Chem 8:325–327CrossRef
71.
Zurück zum Zitat Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) ILs-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376CrossRef Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) ILs-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376CrossRef
72.
Zurück zum Zitat Xin D, Yang M, Zhang Y, Hou X, Wu J, Fan X, Wang J, Zhang J (2016) Physicochemical characterization and enzymatic digestibility of Chinese pennisetum pretreated with 1-ethyl-3-methylimidazolium acetate at moderate temperatures. Renewable Energy 91:409–416CrossRef Xin D, Yang M, Zhang Y, Hou X, Wu J, Fan X, Wang J, Zhang J (2016) Physicochemical characterization and enzymatic digestibility of Chinese pennisetum pretreated with 1-ethyl-3-methylimidazolium acetate at moderate temperatures. Renewable Energy 91:409–416CrossRef
73.
Zurück zum Zitat Bian J, Peng F, Peng X-P, Xiao X, Peng P, Xu F, Sun R-C (2014) Effect of [Emim] Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohyd Polym 100:211–217CrossRef Bian J, Peng F, Peng X-P, Xiao X, Peng P, Xu F, Sun R-C (2014) Effect of [Emim] Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohyd Polym 100:211–217CrossRef
74.
Zurück zum Zitat Man Z, Muhammad N, Sarwono A, Bustam MA, Vignesh Kumar M, Rafiq S (2011) Preparation of cellulose nanocrystals using an ILs. J Polym Environ 19:726–731CrossRef Man Z, Muhammad N, Sarwono A, Bustam MA, Vignesh Kumar M, Rafiq S (2011) Preparation of cellulose nanocrystals using an ILs. J Polym Environ 19:726–731CrossRef
75.
Zurück zum Zitat Mao J, Heck B, Reiter G, Laborie M-P (2015) Cellulose nanocrystals’ production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim] HSO4)–mediated hydrolysis. Carbohyd Polym 117:443–451CrossRef Mao J, Heck B, Reiter G, Laborie M-P (2015) Cellulose nanocrystals’ production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim] HSO4)–mediated hydrolysis. Carbohyd Polym 117:443–451CrossRef
76.
Zurück zum Zitat Tan XY, Abd Hamid SB, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ILs solvolysis. Biomass Bioenergy 81:584–591CrossRef Tan XY, Abd Hamid SB, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ILs solvolysis. Biomass Bioenergy 81:584–591CrossRef
77.
Zurück zum Zitat Lazko J, Sénéchal T, Landercy N, Dangreau L, Raquez J-M, Dubois P (2014) Well defined thermostable cellulose nanocrystals via two-step ILs swelling-hydrolysis extraction. Cellulose 21:4195–4207CrossRef Lazko J, Sénéchal T, Landercy N, Dangreau L, Raquez J-M, Dubois P (2014) Well defined thermostable cellulose nanocrystals via two-step ILs swelling-hydrolysis extraction. Cellulose 21:4195–4207CrossRef
78.
Zurück zum Zitat Haron GAS, Mahmood H, Noh MH, Alam MZ, Moniruzzaman M (2021) ILss as a sustainable platform for NC processing from bioresources: overview and current status. ACS Sustain Chem Eng 9:1008–1034CrossRef Haron GAS, Mahmood H, Noh MH, Alam MZ, Moniruzzaman M (2021) ILss as a sustainable platform for NC processing from bioresources: overview and current status. ACS Sustain Chem Eng 9:1008–1034CrossRef
79.
Zurück zum Zitat Schlufter K, Schmauder HP, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ILs 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27:1670–1676CrossRef Schlufter K, Schmauder HP, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ILs 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27:1670–1676CrossRef
80.
Zurück zum Zitat Hernoux-Villière A, Lévêque J-M, Kärkkäinen J, Papaiconomou N, Lajunen M, Lassi U (2014) Task-specific ILs for the depolymerisation of starch-based industrial waste into high reducing sugars. Catal Today 223:11–17CrossRef Hernoux-Villière A, Lévêque J-M, Kärkkäinen J, Papaiconomou N, Lajunen M, Lassi U (2014) Task-specific ILs for the depolymerisation of starch-based industrial waste into high reducing sugars. Catal Today 223:11–17CrossRef
81.
Zurück zum Zitat Dharaskar SA, Varma MN, Shende DZ, Yoo CK, Wasewar KL (2013) Synthesis, characterization and application of 1-butyl-3 methylimidazolium chloride as green material for extractive desulfurization of liquid fuel. Sci World J 2013:1–13CrossRef Dharaskar SA, Varma MN, Shende DZ, Yoo CK, Wasewar KL (2013) Synthesis, characterization and application of 1-butyl-3 methylimidazolium chloride as green material for extractive desulfurization of liquid fuel. Sci World J 2013:1–13CrossRef
82.
Zurück zum Zitat Yassin FA, El Kady FY, Ahmed HS, Mohamed LK, Shaban SA, Elfadaly AK (2015) Highly effective ILss for biodiesel production from waste vegetable oils. Egypt J Pet 24:103–111CrossRef Yassin FA, El Kady FY, Ahmed HS, Mohamed LK, Shaban SA, Elfadaly AK (2015) Highly effective ILss for biodiesel production from waste vegetable oils. Egypt J Pet 24:103–111CrossRef
83.
Zurück zum Zitat Onkarappa H, Prakash G, Pujar G, Kumar CR, Latha M, Betageri VS (2020) Synthesis and characterization of NC using renewable resources through ILs medium. Adv Natural Sci Nanosci Nanotechnol 11:035001CrossRef Onkarappa H, Prakash G, Pujar G, Kumar CR, Latha M, Betageri VS (2020) Synthesis and characterization of NC using renewable resources through ILs medium. Adv Natural Sci Nanosci Nanotechnol 11:035001CrossRef
84.
Zurück zum Zitat Beyki MH, Bayat M, Shemirani F (2016) Fabrication of core–shell structured magnetic NC base polymeric ILs for effective biosorption of Congo red dye. Biores Technol 218:326–334CrossRef Beyki MH, Bayat M, Shemirani F (2016) Fabrication of core–shell structured magnetic NC base polymeric ILs for effective biosorption of Congo red dye. Biores Technol 218:326–334CrossRef
85.
Zurück zum Zitat Babicka M, Woźniak M, Dwiecki K, Borysiak S, Ratajczak I (2020) Preparation of NC using ILss: 1-propyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium chloride. Molecules 25:1544CrossRef Babicka M, Woźniak M, Dwiecki K, Borysiak S, Ratajczak I (2020) Preparation of NC using ILss: 1-propyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium chloride. Molecules 25:1544CrossRef
86.
Zurück zum Zitat Onkarappa H, Prakash G, Pujar G, Kumar CR, Latha M, Betageri VS (2020) Hevea brasiliensis mediated synthesis of NC: effect of preparation methods on morphology and properties. Int J Biol Macromol 160:1021–1028CrossRef Onkarappa H, Prakash G, Pujar G, Kumar CR, Latha M, Betageri VS (2020) Hevea brasiliensis mediated synthesis of NC: effect of preparation methods on morphology and properties. Int J Biol Macromol 160:1021–1028CrossRef
87.
Zurück zum Zitat Samsudin NA, Low FW, Yusoff Y, Shakeri M, Tan XY, Lai CW, Asim N, Oon CS, Newaz KS, Tiong SK (2020) Effect of temperature on synthesis of cellulose nanoparticles via ILs hydrolysis process. J Mol Liq 308:113030CrossRef Samsudin NA, Low FW, Yusoff Y, Shakeri M, Tan XY, Lai CW, Asim N, Oon CS, Newaz KS, Tiong SK (2020) Effect of temperature on synthesis of cellulose nanoparticles via ILs hydrolysis process. J Mol Liq 308:113030CrossRef
88.
Zurück zum Zitat Ferreira PF, Pereira AL, Rosa MF, de Santiago-Aguiar RS (2022) Lignin-rich cellulose nanocrystals from coir fiber treated with ILss: preparation and evaluation as pickering emulsifier. Ind Crops Prod 186:115119CrossRef Ferreira PF, Pereira AL, Rosa MF, de Santiago-Aguiar RS (2022) Lignin-rich cellulose nanocrystals from coir fiber treated with ILss: preparation and evaluation as pickering emulsifier. Ind Crops Prod 186:115119CrossRef
89.
Zurück zum Zitat Reyes G, Aguayo MG, Fernández Pérez A, Pääkkönen T, Gacitúa W, Rojas OJ (2019) Dissolution and hydrolysis of bleached kraft pulp using ILss. Polymers 11:673CrossRef Reyes G, Aguayo MG, Fernández Pérez A, Pääkkönen T, Gacitúa W, Rojas OJ (2019) Dissolution and hydrolysis of bleached kraft pulp using ILss. Polymers 11:673CrossRef
90.
Zurück zum Zitat Morales-delaRosa S, Campos-Martin JM, Fierro JL (2018) Chemical hydrolysis of cellulose into fermentable sugars through ILss and antisolvent pretreatments using heterogeneous catalysts. Catal Today 302:87–93CrossRef Morales-delaRosa S, Campos-Martin JM, Fierro JL (2018) Chemical hydrolysis of cellulose into fermentable sugars through ILss and antisolvent pretreatments using heterogeneous catalysts. Catal Today 302:87–93CrossRef
91.
Zurück zum Zitat Kassaye S, Pant KK, Jain S (2017) Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ILs pretreament steps. Renew Energy 104:177–184CrossRef Kassaye S, Pant KK, Jain S (2017) Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ILs pretreament steps. Renew Energy 104:177–184CrossRef
92.
Zurück zum Zitat Haafiz MM, Hassan A, Zakaria Z, Inuwa I (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohyd Polym 103:119–125CrossRef Haafiz MM, Hassan A, Zakaria Z, Inuwa I (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohyd Polym 103:119–125CrossRef
93.
Zurück zum Zitat Phanthong P, Karnjanakom S, Reubroycharoen P, Hao X, Abudula A, Guan G (2017) A facile one-step way for extraction of NC with high yield by ball milling with ILs. Cellulose 24:2083–2093CrossRef Phanthong P, Karnjanakom S, Reubroycharoen P, Hao X, Abudula A, Guan G (2017) A facile one-step way for extraction of NC with high yield by ball milling with ILs. Cellulose 24:2083–2093CrossRef
94.
Zurück zum Zitat Huang J, Lin C, Chen R, Xiong W, Wen X, Luo X (2020) ILs-assisted synthesis of NC adsorbent and its adsorption properties. Chin J Mater Res 34:674–682 Huang J, Lin C, Chen R, Xiong W, Wen X, Luo X (2020) ILs-assisted synthesis of NC adsorbent and its adsorption properties. Chin J Mater Res 34:674–682
95.
Zurück zum Zitat Babicka M, Woźniak M, Szentner K, Bartkowiak M, Peplińska B, Dwiecki K, Borysiak S, Ratajczak I (2021) NC production using ILss with enzymatic pretreatment. Materials 14:3264CrossRef Babicka M, Woźniak M, Szentner K, Bartkowiak M, Peplińska B, Dwiecki K, Borysiak S, Ratajczak I (2021) NC production using ILss with enzymatic pretreatment. Materials 14:3264CrossRef
96.
Zurück zum Zitat Jordan JH, Easson MW, Condon BD (2020) Cellulose hydrolysis using ILss and inorganic acids under dilute conditions: morphological comparison of NC. RSC Adv 10:39413–39424CrossRef Jordan JH, Easson MW, Condon BD (2020) Cellulose hydrolysis using ILss and inorganic acids under dilute conditions: morphological comparison of NC. RSC Adv 10:39413–39424CrossRef
97.
Zurück zum Zitat Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1: Process optimization. J Appl Polym Sci 113:1270–1275CrossRef Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1: Process optimization. J Appl Polym Sci 113:1270–1275CrossRef
98.
Zurück zum Zitat Yang C-Y, Fang TJ (2014) Combination of ultrasonic irradiation with ILs pretreatment for enzymatic hydrolysis of rice straw. Biores Technol 164:198–202CrossRef Yang C-Y, Fang TJ (2014) Combination of ultrasonic irradiation with ILs pretreatment for enzymatic hydrolysis of rice straw. Biores Technol 164:198–202CrossRef
99.
Zurück zum Zitat Li W, Zhao X, Liu S (2013) Preparation of entangled NC fibers from APMP and its magnetic functional property as matrix. Carbohyd Polym 94:278–285CrossRef Li W, Zhao X, Liu S (2013) Preparation of entangled NC fibers from APMP and its magnetic functional property as matrix. Carbohyd Polym 94:278–285CrossRef
100.
Zurück zum Zitat Wu J, Feng Y, Zhang L, Wu W (2020) NC-based Surface-enhanced Raman spectroscopy sensor for highly sensitive detection of TNT. Carbohyd Polym 248:116766CrossRef Wu J, Feng Y, Zhang L, Wu W (2020) NC-based Surface-enhanced Raman spectroscopy sensor for highly sensitive detection of TNT. Carbohyd Polym 248:116766CrossRef
101.
Zurück zum Zitat Abral H, Lawrensius V, Handayani D, Sugiarti E (2018) Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization. Carbohyd Polym 191:161–167CrossRef Abral H, Lawrensius V, Handayani D, Sugiarti E (2018) Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization. Carbohyd Polym 191:161–167CrossRef
102.
Zurück zum Zitat Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd Polym 83:1804–1811CrossRef Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd Polym 83:1804–1811CrossRef
103.
Zurück zum Zitat Tang L, Huang B, Lu Q, Wang S, Ou W, Lin W, Chen X (2013) Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Biores Technol 127:100–105CrossRef Tang L, Huang B, Lu Q, Wang S, Ou W, Lin W, Chen X (2013) Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Biores Technol 127:100–105CrossRef
104.
Zurück zum Zitat Li W, Zhao X, Huang Z, Liu S (2013) NC fibrils isolated from BHKP using ultrasonication and their reinforcing properties in transparent poly (vinyl alcohol) films. J Polym Res 20:1–7 Li W, Zhao X, Huang Z, Liu S (2013) NC fibrils isolated from BHKP using ultrasonication and their reinforcing properties in transparent poly (vinyl alcohol) films. J Polym Res 20:1–7
105.
Zurück zum Zitat Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromol 12:167–172CrossRef Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromol 12:167–172CrossRef
Metadaten
Titel
Production and characteristics of nanocellulose obtained with using of ionic liquid and ultrasonication
verfasst von
Nurul Atikah Mohd Ishak
Fatimah Zahara Abdullah
Nurhidayatullaili Muhd Julkapli
Publikationsdatum
01.08.2022
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 8/2022
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-022-05549-6

Weitere Artikel der Ausgabe 8/2022

Journal of Nanoparticle Research 8/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.