Skip to main content
Erschienen in: Glass and Ceramics 1-2/2019

04.06.2019 | AT ENTERPRISES AND INSTITUTES

Production of Aluminum-Graphite Composite by Spark Plasma Sintering

verfasst von: N. A. Rubinkovskii, D. P. Shornikov, A. V. Tenishev, A. G. Zaluzhnyi, A. G. Zholnin

Erschienen in: Glass and Ceramics | Ausgabe 1-2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An aluminum-graphite composite was obtained by spark plasma sintering. The graphite particle size, compaction temperature, and soaking time were shown to influence the aluminum carbide formation process. It is demonstrated that the use of larger graphite plates decreases Al4C3 formation by almost a factor of two. The influence of the graphite content on the density, CLTE, and thermal conductivity of the composite was studied. It was found that for graphite weight content above 70% the thermophysical properties of compacts degrade significantly because large numbers of pores are formed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Here and below, the weight content, %.
 
Literatur
1.
Zurück zum Zitat D. Miracle, “Metal matrix composites — From science to technological significance,” Compos. Sci. Technol., 65, 2526 (2005).CrossRef D. Miracle, “Metal matrix composites — From science to technological significance,” Compos. Sci. Technol., 65, 2526 (2005).CrossRef
2.
Zurück zum Zitat S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Mater. Sci. Eng., 74, 281 (2013).CrossRef S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Mater. Sci. Eng., 74, 281 (2013).CrossRef
3.
Zurück zum Zitat B. Bhav Singh B and M. Balasubramanian, “Processing and properties of copper-coated carbon fiber reinforced aluminium alloy composites,” J. Mater. Proc. Technol., 209, 2104 (2009). B. Bhav Singh B and M. Balasubramanian, “Processing and properties of copper-coated carbon fiber reinforced aluminium alloy composites,” J. Mater. Proc. Technol., 209, 2104 (2009).
4.
Zurück zum Zitat T. T. Liu, X. B. He, Q. Liu, et al., “Fabrication and thermal conductivity of short graphite fiber Al composites by vacuum pressure infiltration,” J. Mater. Eng. Perform., 22, 1649 (2013).CrossRef T. T. Liu, X. B. He, Q. Liu, et al., “Fabrication and thermal conductivity of short graphite fiber Al composites by vacuum pressure infiltration,” J. Mater. Eng. Perform., 22, 1649 (2013).CrossRef
5.
Zurück zum Zitat H. Ouyang, H. Li, L. Qi, et al., “Fabrication of short carbon fiber preforms coated with pyrocarbon SiC for liquid metal infiltration,” J. Mater. Sci., 43, 4618 (2008).CrossRef H. Ouyang, H. Li, L. Qi, et al., “Fabrication of short carbon fiber preforms coated with pyrocarbon SiC for liquid metal infiltration,” J. Mater. Sci., 43, 4618 (2008).CrossRef
6.
Zurück zum Zitat J. M. Ting and M. L. Lake, “Vapor-grown carbon-fiber rein forced carbon composites,” J. Mater. Res., 10, 247 (1995).CrossRef J. M. Ting and M. L. Lake, “Vapor-grown carbon-fiber rein forced carbon composites,” J. Mater. Res., 10, 247 (1995).CrossRef
7.
Zurück zum Zitat J. Cai, Y. Chen, V. F. Nesterenko, and M. A. Meyers, “Effect of strain rate on the mechanical properties of aluminum alloy matrix composite filled with discontinuous carbon fibers,” Mater. Sci. Eng. A, 485, 681 (2008).CrossRef J. Cai, Y. Chen, V. F. Nesterenko, and M. A. Meyers, “Effect of strain rate on the mechanical properties of aluminum alloy matrix composite filled with discontinuous carbon fibers,” Mater. Sci. Eng. A, 485, 681 (2008).CrossRef
8.
Zurück zum Zitat K. K. Chawla and N. Chawla, Metal Matrix Composites, Wiley, Hoboken (2006). K. K. Chawla and N. Chawla, Metal Matrix Composites, Wiley, Hoboken (2006).
9.
Zurück zum Zitat J. M. Chiou, B. Y. Wei, and C. M. Chen, “The effects of binders and heating temperatures on the properties of preforms,” J. Mater. Eng. Perform., 2, 383 (1993).CrossRef J. M. Chiou, B. Y. Wei, and C. M. Chen, “The effects of binders and heating temperatures on the properties of preforms,” J. Mater. Eng. Perform., 2, 383 (1993).CrossRef
10.
Zurück zum Zitat M. Jacquesson, A. Girard, M. H. Vidal-Se?tif, and R. Valle, “Fatigue behaviour of aluminium matrix composites reinforced with continuous alumina fibres,” Metall. Mater. Trans. A, 35, 3289 (2004). M. Jacquesson, A. Girard, M. H. Vidal-Se?tif, and R. Valle, “Fatigue behaviour of aluminium matrix composites reinforced with continuous alumina fibres,” Metall. Mater. Trans. A, 35, 3289 (2004).
11.
Zurück zum Zitat I. E. Monje, E. Louis, and J. M. Molina, “Optimizing thermal conductivity in gas-pressure infiltrated aluminum diamond composites by precise processing control,” Composites A, 48(9) (2013).CrossRef I. E. Monje, E. Louis, and J. M. Molina, “Optimizing thermal conductivity in gas-pressure infiltrated aluminum diamond composites by precise processing control,” Composites A, 48(9) (2013).CrossRef
12.
Zurück zum Zitat Y. H. Liu, J. Du, S. R. Yu, and W. Wang, “Creating defects on graphene basal-plane toward interface optimization of graphene CuCr composites,” Wear, 256, 275 (2004).CrossRef Y. H. Liu, J. Du, S. R. Yu, and W. Wang, “Creating defects on graphene basal-plane toward interface optimization of graphene CuCr composites,” Wear, 256, 275 (2004).CrossRef
13.
Zurück zum Zitat Z. Tan, Z. Li, G. Fan, et al., “Diamond aluminum composites processed by vacuum hot pressing: Microstructure characteristics and thermal properties,” Diam. Relat. Mater., 31(1) (2013). Z. Tan, Z. Li, G. Fan, et al., “Diamond aluminum composites processed by vacuum hot pressing: Microstructure characteristics and thermal properties,” Diam. Relat. Mater., 31(1) (2013).
14.
Zurück zum Zitat K. Mizuuchi, K. Inoue, Y. Agari, et al., “Processing of diamond particle dispersed aluminum matrix composites in continuous solid-liquid co-existent state by SPS and their thermal properties,” Composites B, 42, 825 (2011).CrossRef K. Mizuuchi, K. Inoue, Y. Agari, et al., “Processing of diamond particle dispersed aluminum matrix composites in continuous solid-liquid co-existent state by SPS and their thermal properties,” Composites B, 42, 825 (2011).CrossRef
15.
Zurück zum Zitat K. Landry, S. Kalogeropoulou, and N. Eustathopoulos, “Wettability of carbon by aluminum and aluminum alloys,” Mater. Sci. Eng. A, 254, 99 (1998).CrossRef K. Landry, S. Kalogeropoulou, and N. Eustathopoulos, “Wettability of carbon by aluminum and aluminum alloys,” Mater. Sci. Eng. A, 254, 99 (1998).CrossRef
16.
Zurück zum Zitat Z. Tan, Z. Li, G. Fan, et al., “Fabrication of diamond aluminum composites by vacuum hot pressing: Process optimization and thermal properties,” Composites B, 47, 173 (2013).CrossRef Z. Tan, Z. Li, G. Fan, et al., “Fabrication of diamond aluminum composites by vacuum hot pressing: Process optimization and thermal properties,” Composites B, 47, 173 (2013).CrossRef
17.
Zurück zum Zitat K. Chu, C. Jia, X. Liang, et al., “Effect of particle size on the microstructure and thermal conductivity of Al diamond composites prepared by spark plasma sintering,” Rare Met., 28, 646 (2009).CrossRef K. Chu, C. Jia, X. Liang, et al., “Effect of particle size on the microstructure and thermal conductivity of Al diamond composites prepared by spark plasma sintering,” Rare Met., 28, 646 (2009).CrossRef
18.
Zurück zum Zitat T. Etter, P. Schulz, M. Weber, et al., “Aluminum carbide formation in interpenetrating graphite aluminum composites,” Mater. Sci. Eng. A, 448(1 - 2), 1 - 6 (2007).CrossRef T. Etter, P. Schulz, M. Weber, et al., “Aluminum carbide formation in interpenetrating graphite aluminum composites,” Mater. Sci. Eng. A, 448(1 - 2), 1 - 6 (2007).CrossRef
19.
Zurück zum Zitat B. Revzin, D. Fuks, and J. Pelleg, “Influence of alloying on the solubility of carbon fibers in aluminium-based composites: non-empirical approach,” Composites. Sci. Technol., 56, 3 - 10 (1996).CrossRef B. Revzin, D. Fuks, and J. Pelleg, “Influence of alloying on the solubility of carbon fibers in aluminium-based composites: non-empirical approach,” Composites. Sci. Technol., 56, 3 - 10 (1996).CrossRef
20.
Zurück zum Zitat K. Mizuuchi, K. Inoue, Y. Agari, et al., “Processing of diamond particle dispersed aluminum matrix composites in continuous solid-liquid co-existent state by SPS and their thermal properties,” Composites B Eng., 42(4), 825 - 831 (2011).CrossRef K. Mizuuchi, K. Inoue, Y. Agari, et al., “Processing of diamond particle dispersed aluminum matrix composites in continuous solid-liquid co-existent state by SPS and their thermal properties,” Composites B Eng., 42(4), 825 - 831 (2011).CrossRef
21.
Zurück zum Zitat J. K. Chen and I. S. Huang, “Thermal properties of aluminum-graphite composites by powder metallurgy,” Composites B ng., 42(2), 790 - 825 (2012). J. K. Chen and I. S. Huang, “Thermal properties of aluminum-graphite composites by powder metallurgy,” Composites B ng., 42(2), 790 - 825 (2012).
22.
Zurück zum Zitat Hiroki Kurita, J.-F. Silvain, and Akira Kawasaki, “Microstructure of a carbon fiber-reinforced aluminum matrix composite fabricated by spark plasma sintering in various pulse conditions,” J. Mater. Sci., 49(8), 3268 - 3275 (2014). Hiroki Kurita, J.-F. Silvain, and Akira Kawasaki, “Microstructure of a carbon fiber-reinforced aluminum matrix composite fabricated by spark plasma sintering in various pulse conditions,” J. Mater. Sci., 49(8), 3268 - 3275 (2014).
23.
Zurück zum Zitat R. N. Lumley, T. B. Sercombe, and G. B. Schaffer, “Surface oxide and the role of magnesium during the sintering of aluminium,” Metall. Mater. Trans. A, 30, 457 - 463 (1999).CrossRef R. N. Lumley, T. B. Sercombe, and G. B. Schaffer, “Surface oxide and the role of magnesium during the sintering of aluminium,” Metall. Mater. Trans. A, 30, 457 - 463 (1999).CrossRef
24.
Zurück zum Zitat P. S. Turner, “Thermal-expansion stresses in reinforced plastics,” J. Res. NBS, 37, 239 - 250 (1946). P. S. Turner, “Thermal-expansion stresses in reinforced plastics,” J. Res. NBS, 37, 239 - 250 (1946).
25.
Zurück zum Zitat E. H. Kerner, “The Elastic and Thermo-elastic Properties of Composite Media,” Proc. Phys. Soc. B, 69, 808 - 813 (1956).CrossRef E. H. Kerner, “The Elastic and Thermo-elastic Properties of Composite Media,” Proc. Phys. Soc. B, 69, 808 - 813 (1956).CrossRef
26.
Zurück zum Zitat K. A. Khor, L. G. Yu, O. Andersen, and G. Stephani, “Effect of spark plasma sintering (SPS) on the microstructure and mechanical properties of randomly packed hollow sphere (RHS) cell wall,” Mater. Sci. Eng. A, 356, 130 - 135 (2003).CrossRef K. A. Khor, L. G. Yu, O. Andersen, and G. Stephani, “Effect of spark plasma sintering (SPS) on the microstructure and mechanical properties of randomly packed hollow sphere (RHS) cell wall,” Mater. Sci. Eng. A, 356, 130 - 135 (2003).CrossRef
27.
Zurück zum Zitat U. Anselmi-Tamburini, S. Gennari, J. E. Garay, and Z. A. Munir, “Fundamental investigations on the spark plasma sintering synthesis process. II. Modeling of current and temperature distributions,” Mater. Sci. Eng. A, 394, 139 - 148 (2005).CrossRef U. Anselmi-Tamburini, S. Gennari, J. E. Garay, and Z. A. Munir, “Fundamental investigations on the spark plasma sintering synthesis process. II. Modeling of current and temperature distributions,” Mater. Sci. Eng. A, 394, 139 - 148 (2005).CrossRef
28.
Zurück zum Zitat H. Kurita, H. Kwon, M. Estili, and A. Kawasaki, “Multi-walled carbon nanotube-aluminium matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion,” Mater. Trans., 52(10), 1960 - 1965 (2011).CrossRef H. Kurita, H. Kwon, M. Estili, and A. Kawasaki, “Multi-walled carbon nanotube-aluminium matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion,” Mater. Trans., 52(10), 1960 - 1965 (2011).CrossRef
29.
Zurück zum Zitat G. Lalet, H. Kurita, J.-M. Heintz, et al., “Thermal expansion coefficient and thermal fatigue of discontinuous carbon fiber-rein-forced copper and aluminum matrix composites without interfacial chemical bond,” J. Mater. Sci., 49, 397 - 402 (2014), doi: 10.1007 s10853-013-7717-7. G. Lalet, H. Kurita, J.-M. Heintz, et al., “Thermal expansion coefficient and thermal fatigue of discontinuous carbon fiber-rein-forced copper and aluminum matrix composites without interfacial chemical bond,” J. Mater. Sci., 49, 397 - 402 (2014), doi: 10.1007 s10853-013-7717-7.
30.
Zurück zum Zitat M. Eriksson, Z. Shen, and M. Nygren, “Fast densification and deformation of titanium powder,” Powder Metall., 48, 231 – 236 (2005).CrossRef M. Eriksson, Z. Shen, and M. Nygren, “Fast densification and deformation of titanium powder,” Powder Metall., 48, 231 – 236 (2005).CrossRef
31.
Zurück zum Zitat C. J. Chang, C. H. Chang, J. D. Hwang, and C. T. Kuo, “Thermal characterization of high thermal conductive graphites reinforced aluminum matrix composites,” in: Proc. IMPACT Conference 2009 International 3D IC conference, Taipei, Taiwan, October 2009, Taipei (2009). C. J. Chang, C. H. Chang, J. D. Hwang, and C. T. Kuo, “Thermal characterization of high thermal conductive graphites reinforced aluminum matrix composites,” in: Proc. IMPACT Conference 2009 International 3D IC conference, Taipei, Taiwan, October 2009, Taipei (2009).
32.
Zurück zum Zitat S. Baglari, M. Kole, and T. K. Dey, “Effective thermal conductivity and coefficient of linear thermal expansion of high-density polyethylene-fly ash composites,” Ind. J. Phys., 85(4), 559 - 73 (2011).CrossRef S. Baglari, M. Kole, and T. K. Dey, “Effective thermal conductivity and coefficient of linear thermal expansion of high-density polyethylene-fly ash composites,” Ind. J. Phys., 85(4), 559 - 73 (2011).CrossRef
Metadaten
Titel
Production of Aluminum-Graphite Composite by Spark Plasma Sintering
verfasst von
N. A. Rubinkovskii
D. P. Shornikov
A. V. Tenishev
A. G. Zaluzhnyi
A. G. Zholnin
Publikationsdatum
04.06.2019
Verlag
Springer US
Erschienen in
Glass and Ceramics / Ausgabe 1-2/2019
Print ISSN: 0361-7610
Elektronische ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-019-00126-1

Weitere Artikel der Ausgabe 1-2/2019

Glass and Ceramics 1-2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.