Skip to main content
Erschienen in: Metallurgist 11-12/2017

20.04.2017

Production Technology Features for Aluminum Matrix Alloys with a Silicon Carbide Framework

verfasst von: V. Yu. Bazhin, E. M. Gutema, S. A. Savchenkov

Erschienen in: Metallurgist | Ausgabe 11-12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Currently, good mechanical properties and a high level of thermal stability of aluminum alloy components with a composite matrix attract considerable interest for use in aerospace and automobile industries. Widespread introduction of aluminum matrix alloys with introduced solid particles of complex composition is hindered by the high production costs of preparing components and the low level of quality for the cast objects obtained. Achievement of uniform distribution of reinforcing particles within the limits of an aluminum matrix structure is one of the most important problems affecting composite material properties and quality. Questions are studied in this work of production technology for a dispersion alloy with inbuilt silicon carbide particles. A set of laboratory tests is conducted including preliminary preparation and classification of silicon carbide particles from an exhausted lining of an aluminum electrolyzer, preparation of a magnesium master alloy with introduction of particles, and preparation of objects of a composite Al–Mg–SiC alloy. Experiments are carried out with a change in SiC content from 5 to 25 wt.% and magnesium from 2 to 10 wt.%. Results of the experiments show that the technology developed is effective for preparing uniform dispersion with introduction of reinforcing particles during preliminary addition of a magnesium master alloy to molten aluminum. With an increase in amount of silicon carbide particles, a tendency is observed of an increase in strength and impact toughness of the cast billets obtained, and the beast results for ductility are achieved with a magnesium content of 7–8% and presence of 18–20% silicon carbide (SiC) particles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Gnjidi, D. Boi, and M. Mitkov, “The influence of SiC particles on compressive properties of metal matrix composites,” Mater. Characteriz., 147(2), 129–138 (2001).CrossRef X. Gnjidi, D. Boi, and M. Mitkov, “The influence of SiC particles on compressive properties of metal matrix composites,” Mater. Characteriz., 147(2), 129–138 (2001).CrossRef
2.
Zurück zum Zitat J. Gu, X. Zhang, and M. Gu, “Mechanical properties and damping capacity of (SiC + Al2O3.SiO2) / Mg hybrid metal matrix composite,” J. Alloys and Compounds, 385, No. 1, 104–108 (2004).CrossRef J. Gu, X. Zhang, and M. Gu, “Mechanical properties and damping capacity of (SiC + Al2O3.SiO2) / Mg hybrid metal matrix composite,” J. Alloys and Compounds, 385, No. 1, 104–108 (2004).CrossRef
3.
Zurück zum Zitat M. Gupta and S. Qin, “Effect of interfacial characteristics on the failure mechanism mode of a SiC reinforced A1 based metal matrix composite,” J. Mater. Process. Tech., 67, 94–99 (1997).CrossRef M. Gupta and S. Qin, “Effect of interfacial characteristics on the failure mechanism mode of a SiC reinforced A1 based metal matrix composite,” J. Mater. Process. Tech., 67, 94–99 (1997).CrossRef
4.
Zurück zum Zitat J. P. Lucas, J. J. Stephens, and F. A. Greulich, “The effect of reinforcement stability on composition redistribution in cast aluminium metal matrix composites,” Mat. Sci. Eng., 131, No. 2, 221–230 (1991).CrossRef J. P. Lucas, J. J. Stephens, and F. A. Greulich, “The effect of reinforcement stability on composition redistribution in cast aluminium metal matrix composites,” Mat. Sci. Eng., 131, No. 2, 221–230 (1991).CrossRef
5.
Zurück zum Zitat S. Naher, D. Brabazon, and L. Looney, “Simulation of the stir casting process,” J. Mater. Process. Tech., 143, 567–571 (2003).CrossRef S. Naher, D. Brabazon, and L. Looney, “Simulation of the stir casting process,” J. Mater. Process. Tech., 143, 567–571 (2003).CrossRef
6.
Zurück zum Zitat L. J. Yang, “The effect of casting temperature on the properties of squeeze cast aluminium and zinc alloys,” J. Mater. Process. Tech., 140, 391–396 (2003).CrossRef L. J. Yang, “The effect of casting temperature on the properties of squeeze cast aluminium and zinc alloys,” J. Mater. Process. Tech., 140, 391–396 (2003).CrossRef
7.
Zurück zum Zitat D. J. Lloyd, H. Lagace, A. McLeod, and P. L. Morris, “Microstructural aspects of aluminium silicon carbide particulate composites produced by a casting method,” Mater. Sci. Eng., 107, 73–80 (1989).CrossRef D. J. Lloyd, H. Lagace, A. McLeod, and P. L. Morris, “Microstructural aspects of aluminium silicon carbide particulate composites produced by a casting method,” Mater. Sci. Eng., 107, 73–80 (1989).CrossRef
8.
Zurück zum Zitat V. C. Nardone and K. M. Prewo, “On the strength of discontinuous silicon carbide reinforced aluminum composites,” Scripta Metallurg., 20, No. 1, 43–48 (1986).CrossRef V. C. Nardone and K. M. Prewo, “On the strength of discontinuous silicon carbide reinforced aluminum composites,” Scripta Metallurg., 20, No. 1, 43–48 (1986).CrossRef
9.
Zurück zum Zitat O. P. Modi, A. H. Yegneswaran, and P. K. Rohatgi, “Thermomechanical processing of aluminum-based particulate composites,” J. Mater. Sci., 23, No. 1, 83–92 (1988).CrossRef O. P. Modi, A. H. Yegneswaran, and P. K. Rohatgi, “Thermomechanical processing of aluminum-based particulate composites,” J. Mater. Sci., 23, No. 1, 83–92 (1988).CrossRef
10.
Zurück zum Zitat P. Skoglund, “High density PM components by high velocity compaction,” Powder Metallurgy, 44, No. 1, 199–202 2001. P. Skoglund, “High density PM components by high velocity compaction,” Powder Metallurgy, 44, No. 1, 199–202 2001.
11.
Zurück zum Zitat A. Sanaty-Zadeh, “Comparison between current models for the strength of particulate reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect,” Mater. Sci. Eng., 531, 112–218 (2012). A. Sanaty-Zadeh, “Comparison between current models for the strength of particulate reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect,” Mater. Sci. Eng., 531, 112–218 (2012).
12.
Zurück zum Zitat S. Jayalakshmi and M. Gupta, Metallic Amorphous Alloy Reinforcements in Light Metal Matrices, Springer (2015). S. Jayalakshmi and M. Gupta, Metallic Amorphous Alloy Reinforcements in Light Metal Matrices, Springer (2015).
13.
Zurück zum Zitat S. V. Murty, B. N. Rao, and B. P. Kashyap, “On the hot working characteristics of 6061 Al–SiC and 6061 Al2O3 particulate reinforced metal matrix composites,” Compos. Sci. Tech., 63, No. 1, 119–135 (2003).CrossRef S. V. Murty, B. N. Rao, and B. P. Kashyap, “On the hot working characteristics of 6061 Al–SiC and 6061 Al2O3 particulate reinforced metal matrix composites,” Compos. Sci. Tech., 63, No. 1, 119–135 (2003).CrossRef
14.
Zurück zum Zitat W. Abdallah et al., “Fundamentals of wettability,” Oilfield Review, 19, No. 2, 44–61 (2007). W. Abdallah et al., “Fundamentals of wettability,” Oilfield Review, 19, No. 2, 44–61 (2007).
15.
Zurück zum Zitat H. Zhang et al., “Tensile behavior and dynamic failure of aluminum 6092/B4C composites,” Mater. Sci. Eng., 433, No. 1, 70–72 (2006).CrossRef H. Zhang et al., “Tensile behavior and dynamic failure of aluminum 6092/B4C composites,” Mater. Sci. Eng., 433, No. 1, 70–72 (2006).CrossRef
Metadaten
Titel
Production Technology Features for Aluminum Matrix Alloys with a Silicon Carbide Framework
verfasst von
V. Yu. Bazhin
E. M. Gutema
S. A. Savchenkov
Publikationsdatum
20.04.2017
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 11-12/2017
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-017-0439-3

Weitere Artikel der Ausgabe 11-12/2017

Metallurgist 11-12/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.