Skip to main content

1988 | OriginalPaper | Buchkapitel

Products of Wiener Functionals on an Abstract Wiener Space

verfasst von : Shiro Ishikawa

Erschienen in: Generalized Functions, Convergence Structures, and Their Applications

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Mikusiński in [1] has proved that the product of the distributions δ (x) and pf. $$\frac{1} {{\text{x}}}$$ on the one-dimensional Euclidean space ℝ exists in the sense of generalized operations and equals $$- \frac{1} {{\text{2}}}\delta \prime \left( {\text{x}} \right)$$ . This result can be easily extended to the case of an n-dimensional Euclidean space ℝn, i.e. for any $$\ell = \left( {\ell _1,\ell _2, \ldots,\ell _{\text{n}} } \right) \in R^{\text{n}},\left( {\ell \ne 0} \right)$$ , $$\delta \left( {\left( {\ell,{\text{x}}} \right)} \right) \cdot {\text{pf}}{\text{.}}\frac{1} {{\left( {\ell,{\text{x}}} \right)}} = - \frac{1} {2}\delta \prime \left( {\left( {\ell,{\text{x}}} \right)} \right)\quad {\text{x}} = \left( {{\text{x}}_{\text{1}}, \ldots,{\text{x}}_{\text{n}} } \right) \in R^{\text{n}},$$ where $$\left( {\ell,{\text{x}}} \right) = \sum\limits_{{\text{k}} = 1}^{\text{n}} {\ell _{\text{k}} {\text{x}}_{\text{k}}}$$ .In this paper we shall try to extend the above results to the case of an infinite dimensional space i.e. an abstract Wiener space.

Metadaten
Titel
Products of Wiener Functionals on an Abstract Wiener Space
verfasst von
Shiro Ishikawa
Copyright-Jahr
1988
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4613-1055-6_17