Planta Med 2010; 76(1): 79-81
DOI: 10.1055/s-0029-1185944
Pharmacology
Letters
© Georg Thieme Verlag KG Stuttgart · New York

Flavonoids and Isoflavonoids from Sophorae Flos Improve Glucose Uptake in Vitro

Quan Cheng Chen1 , 2 , Wei Yun Zhang1 , Wenyi Jin1 , Ik Soo Lee1 , Byung-Sun Min3 , Hyun-Ju Jung4 , Minkyun Na5 , SangMyung Lee6 , KiHwan Bae1
  • 1College of Pharmacy, Chungnam National University, Daejeon, Korea
  • 2Institute for Biomedical Research, Xiamen University, Xiamen, P. R. China
  • 3College of Pharmacy, Catholic University of Daegu, Gyeongbuk, Korea
  • 4Department of Oriental Pharmacy, Wonkwang University, Jeonbuk, Korea
  • 5College of Pharmacy, Yeungnam University, Gyeongbuk, Korea
  • 6KT&G Central Research Institute, Daejeon, Korea
Further Information

Publication History

received April 9, 2009 revised June 11, 2009

accepted June 13, 2009

Publication Date:
27 July 2009 (online)

Abstract

Glucose uptake assay-guided fractionations on the methanol extract of Sophorae Flos led to the isolation of the flavonoids rutin (1), narcissin (2), quercetin (3), tamarixetin (4), and kaempferol (5) and the isoflavonoids cajanin (6), genistein (7), orobol (8), and pratensein (9). Among them, 1, 4, 5, 6, 8, and 9 significantly improved basal glucose uptake in HepG2 cells. Their improving effects were concentration dependent. Compounds 4, 5, 6, and 9 exhibited effects stronger than that of rosiglitazone, which has been used as an antidiabetic drug. However, 2, 3, and 7 did not show any improving effects. Stimulating glucose uptake into peripheral cells may be responsible for reducing the level of blood glucose in the circulation. Therefore, these findings demonstrate a potential to develop these flavonoids and isoflavonoids as hypoglycemic drugs.

References

  • 1 Skyler J S. Diabetes mellitus: pathogenesis and treatment strategies.  J Med Chem. 2004;  47 4113-4117
  • 2 Florence J A, Yeager B F. Treatment of type 2 diabetes mellitus.  Am Fam Physician. 1999;  59 2835-2844
  • 3 Guo J X, Xie P S, Qi P, Chen D F, Jin R L, Mi H M, Shi D W, Wang Z T, Xie P S, Xu H L, Yu G D, Shui Z T, Lu J, Pei Y Y, Qin L P, Wang G R, Wang Z W, Xie Z F, Xu L S, Zhao Z, Zhu Y Q. Pharmacopoeia of the People's Republic of China. Monographs, Part 1. Chinese materia medica, oil, fats, etc.: Sophorae Flos. English Edition. Beijing; Chemical Industry Press 1997: 45-46
  • 4 Kim B H, Chung E Y, Min B K, Lee S H, Kim M K, Min K R, Kim Y. Anti-inflammatory action of legume isoflavonoid sophoricoside through inhibition on cyclooxygenase-2 activity.  Planta Med. 2003;  69 474-476
  • 5 Tang Y P, Li Y F, Hu J, Lou F C. Isolation and identification of antioxidants from Sophora japonica.  J Asian Nat Prod Res. 2002;  4 123-128
  • 6 Ishida H, Umino T, Tsuji K, Kosuge T. Studies on antihemorrhagic substances in herbs classified as hemostatics in Chinese medicine. VI. On the antihemorrhagic principle in Sophora japonica L.  Chem Pharm Bull. 1987;  35 857-860
  • 7 Kamalakkannan N, Prince P S M. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats.  Basic Clin Pharmacol Toxicol. 2006;  98 97-103
  • 8 Kim S Y, Gao J J, Lee W C, Ryu K S, Lee K R, Kim Y C. Antioxidative flavonoids from the leaves of Morus alba.  Arch Pharm Res. 1999;  22 81-85
  • 9 Lee E H, Kim H J, Song Y S, Jin C, Lee K T, Cho J, Lee Y S. Constituents of the stems and fruits of Opuntia ficus-indica var. saboten.  Arch Pharm Res. 2003;  26 1018-1023
  • 10 Lee E, Moon B H, Park Y, Hong S, Lee S, Lee Y, Lim Y. Effects of hydroxy and methoxy substituents on NMR data in flavonols.  Bull Korean Chem Soc. 2008;  29 507-510
  • 11 Zhang X, Hung T M, Phuong P T, Ngoc T M, Min B S, Song K S, Seong Y H, Bae K. Anti-inflammatory activity of flavonoids from Populus davidiana.  Arch Pharm Res. 2006;  29 1102-1108
  • 12 Waffo A K, Azebaze G A, Nkengfack A E, Fomum Z T, Meyer M, Bodo B, van Heerden F R. Indicanines B and C, two isoflavonoid derivatives from the root bark of Erythrina indica.  Phytochemistry. 2000;  53 981-985
  • 13 Chang Y C, Nair M G, Santell R C, Helferich W G. Microwave-mediated synthesis of anticarcinogenic isoflavones from soybeans.  J Agric Food Chem. 1994;  42 1869-1871
  • 14 Zheng Z P, Liang J Y, Hu L H. Water-soluble constituents of Cudrania tricuspidata (Carr.) Bur.  J Integr Plant Biol. 2006;  48 996-1000
  • 15 Hanawa F, Tahara S, Mizutani J. Isoflavonoids produced by iris-pseudacorus seaves treated with cupric chloride.  Phytochemistry. 1991;  30 157-163
  • 16 Zou C H, Wang Y J, Shen Z F. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement.  J Biochem Biophys Methods. 2005;  64 207-215
  • 17 Kobayashi Y, Suzuki M, Satsu H, Arai S, Hara Y, Suzuki K, Miyamoto Y, Shimizu M. Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism.  J Agric Food Chem. 2000;  48 5618-5623
  • 18 Ong K C, Khoo H E. Insulinomimetic effects of myricetin on lipogenesis and glucose transport in rat adipocytes but not glucose transport translocation.  Biochem Pharmacol. 1996;  51 423-429
  • 19 Jorge A P, Horst H, de Sousa E, Pizzolatti M G, Silva F R. Insulinomimetic effects of kaempferitrin on glycaemia and on 14C-glucose uptake in rat soleus muscle.  Chem Biol Interact. 2004;  149 89-96
  • 20 Araujo J R, Goncalves P, Martel F. Modulation of glucose uptake in a human choriocarcinoma cell line (BeWo) by dietary bioactive compounds and drugs of abuse.  J Biochem. 2008;  144 177-186
  • 21 Fang X K, Gao J, Zhu D N. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity.  Life Sci. 2008;  82 615-622
  • 22 Nomura M, Takahashi T, Nagata N, Tsutsumi K, Kobayashi S, Akiba T, Yokogawa K, Moritani S, Miyamoto K. Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells.  Biol Pharm Bull. 2008;  31 1403-1409
  • 23 Park J B. Flavonoids are potential inhibitors of glucose uptake in U937 cells.  Biochem Biophys Res Commun. 1999;  260 568-574
  • 24 Strobel P, Allard C, Perez-Acle T, Calderon R, Aldunate R, Leighton F. Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes.  Biochem J. 2005;  386 471-478
  • 25 Vedavanam K, Srijayanta S, O'Reilly J, Raman A, Wiseman H. Antioxidant action and potential antidiabetic properties of an isoflavonoid-containing soyabean phytochemical extract (SPE).  Phytother Res. 1999;  13 601-608
  • 26 Smith R M, Tiesinga J J, Shah N, Smith J A, Jarett L. Genistein inhibits insulin-stimulated glucose transport and decreases immunocytochemical labeling of GLUT4 carboxyl-terminus without affecting translocation of GLUT4 in isolated rat adipocytes: additional evidence of GLUT4 activation by insulin.  Arch Biochem Biophys. 1993;  300 238-246

Prof. Dr. KiHwan Bae

College of Pharmacy
Chungnam National University

305–764 Daejeon

Korea

Phone: + 82 4 28 21 59 25

Fax: + 82 4 28 23 65 66

Email: baekh@cnu.ac.kr

>