Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.04.2019 | Research Paper

Prognostic Model Development with Missing Labels

A Condition-Based Maintenance Approach Using Machine Learning

Zeitschrift:
Business & Information Systems Engineering
Autoren:
Patrick Zschech, Kai Heinrich, Raphael Bink, Janis S. Neufeld
Wichtige Hinweise
Accepted after two revisions by the editors of the special issue.

Abstract

Condition-based maintenance (CBM) has emerged as a proactive strategy for determining the best time for maintenance activities. In this paper, a case of a milling process with imperfect maintenance at a German automotive manufacturer is considered. Its major challenge is that only data with missing labels are available, which does not provide a sufficient basis for classical prognostic maintenance models. To overcome this shortcoming, a data science study is carried out that combines several analytical methods, especially from the field of machine learning (ML). These include time-domain and time–frequency domain techniques for feature extraction, agglomerative hierarchical clustering and time series clustering for unsupervised pattern detection, as well as a recurrent neural network for prognostic model training. With the approach developed, it is possible to replace decisions that were made based on subjective criteria with data-driven decisions to increase the tool life of the milling machines. The solution can be employed beyond the presented case to similar maintenance scenarios as the basis for decision support and prognostic model development. Moreover, it helps to further close the gap between ML research and the practical implementation of CBM.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise