2021 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Rolling element bearing (REB) failure is one of the general damages in rotating machinery. In this manner, the correct prediction of remaining useful life (RUL) of REB is a crucial challenge to move forward the unwavering quality of the machines. One of the main difficulties in implementing data-driven methods for RUL prediction is to choose proper features that represent real damage progression. In this article, by using the outcomes of frequency analysis through the envelope method, the initiated/existed defects on the ball bearings are identified. Also, new features based on developing faults of ball bearings are recommended to estimate RUL. Early-stage faults in ball bearings usually include inner race, outer race, ball and cage failing. These features represent the sharing of each failure mode in failure. By calculating the severity of any failure mode, the contribution of each mode can be considered as the input to an artificial neural network. Also, the wavelet transform is used to choose an appropriate frequency band for filtering the vibration signal. The laboratory data of the ball bearing accelerated life (PROGNOSTIA) are used to confirm the method. To random changes reduction in recorded vibration data, which is primary in real-life experiments, a preprocessing calculation is connected to the raw data. The results obtained by using new features show a more accurate estimation of the bearings’ RUL and enhanced prediction capability of the proposed method. Also, results indicate that if the contribution of each failure mode is considered as the input of the neural network, then RUL is predicted more precisely.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Albrecht PF et al (1987) Assessment of the reliability of motors in utility applications. IEEE Trans Energy Conv 3:396–406 CrossRef Albrecht PF et al (1987) Assessment of the reliability of motors in utility applications. IEEE Trans Energy Conv 3:396–406
CrossRef
2.
Zurück zum Zitat Crabtree CJ, Donatella Z, Tavner PJ (2014) Survey of commercially available condition monitoring systems for wind turbines Crabtree CJ, Donatella Z, Tavner PJ (2014) Survey of commercially available condition monitoring systems for wind turbines
3.
Zurück zum Zitat Randall RB (2011) Vibration-based condition monitoring: industrial, aerospace and automotive applications. John Wiley & Sons Randall RB (2011) Vibration-based condition monitoring: industrial, aerospace and automotive applications. John Wiley & Sons
4.
Zurück zum Zitat Peng Y, Dong M, Zuo MJ (2010) Current status of machine prognostics in condition-based maintenance: a review. Int J Adv Manuf Technol 50:297–313 CrossRef Peng Y, Dong M, Zuo MJ (2010) Current status of machine prognostics in condition-based maintenance: a review. Int J Adv Manuf Technol 50:297–313
CrossRef
5.
Zurück zum Zitat Huang et al (2015) Support vector machine based estimation of remaining useful life: Current research status and future trends. J Mech Sci Technol 29:151–163 Huang et al (2015) Support vector machine based estimation of remaining useful life: Current research status and future trends. J Mech Sci Technol 29:151–163
6.
Zurück zum Zitat Gebraeel N et al (2004) Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE Trans Ind Electron 51:694–700 CrossRef Gebraeel N et al (2004) Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE Trans Ind Electron 51:694–700
CrossRef
7.
Zurück zum Zitat Mahamad AK, Saon S, Hiyama T (2010) Predicting remaining useful life of rotating machinery based artificial neural network. Comput Math Appl 60:1078–1087 CrossRef Mahamad AK, Saon S, Hiyama T (2010) Predicting remaining useful life of rotating machinery based artificial neural network. Comput Math Appl 60:1078–1087
CrossRef
8.
Zurück zum Zitat Wang WQ, Golnaraghi MF, Ismail F (2004) Prognosis of machine health condition using neuro-fuzzy systems. Mech Syst Sig Process 18:813–831 CrossRef Wang WQ, Golnaraghi MF, Ismail F (2004) Prognosis of machine health condition using neuro-fuzzy systems. Mech Syst Sig Process 18:813–831
CrossRef
9.
Zurück zum Zitat Zhao M, Tang B, Tan Q (2016) Bearing remaining useful life estimation based on time–frequency representation and supervised dimensionality reduction. Measurement 86:41–55 CrossRef Zhao M, Tang B, Tan Q (2016) Bearing remaining useful life estimation based on time–frequency representation and supervised dimensionality reduction. Measurement 86:41–55
CrossRef
10.
Zurück zum Zitat Randall RB, Antoni J (2011) Rolling element bearing diagnostics—a tutorial. Mech Syst Sig Process 25(2):485–520 Randall RB, Antoni J (2011) Rolling element bearing diagnostics—a tutorial. Mech Syst Sig Process 25(2):485–520
11.
Zurück zum Zitat Shi DF, Wang WJ, Qu LS (2004) Defect detection for bearings using envelope spectra of wavelet transform. J Vib Acoust 126(4):567 CrossRef Shi DF, Wang WJ, Qu LS (2004) Defect detection for bearings using envelope spectra of wavelet transform. J Vib Acoust 126(4):567
CrossRef
12.
Zurück zum Zitat Liao H, Zhao W, Guo H (2006) Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model. In: Reliability and maintainability symposium, pp 127–132 Liao H, Zhao W, Guo H (2006) Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model. In: Reliability and maintainability symposium, pp 127–132
13.
Zurück zum Zitat Nectoux P et al (2012) An experimental platform for bearings accelerated degradation tests. In: IEEE international conference on prognostics and health management, PHM 2012, pp 1–8. IEEE Catalog Number: CPF12PHM-CDR Nectoux P et al (2012) An experimental platform for bearings accelerated degradation tests. In: IEEE international conference on prognostics and health management, PHM 2012, pp 1–8. IEEE Catalog Number: CPF12PHM-CDR
14.
Zurück zum Zitat Hosseini M, Yazdi M, Behzad B, Ghodrati A, Vahed T (2019) Experimental study of rolling element bearing failure pattern based on vibration growth process. In: 29th european safety and reliability conference (ESREL), Honover, Germany Hosseini M, Yazdi M, Behzad B, Ghodrati A, Vahed T (2019) Experimental study of rolling element bearing failure pattern based on vibration growth process. In: 29th european safety and reliability conference (ESREL), Honover, Germany
- Titel
- Prognostic of Rolling Element Bearings Based on Early-Stage Developing Faults
- DOI
- https://doi.org/10.1007/978-981-15-9199-0_31
- Autoren:
-
M. Hosseini Yazdi
M. Behzad
S. Khodaygan
- Verlag
- Springer Singapore
- Sequenznummer
- 31