Skip to main content

2012 | OriginalPaper | Buchkapitel

15. Progress and Open Questions in the Identification of Electrically Stimulated Human Muscle for Stroke Rehabilitation

verfasst von : Fengmin Le, Chris T. Freeman, Ivan Markovsky, Eric Rogers

Erschienen in: System Identification, Environmental Modelling, and Control System Design

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent work involving the use of robots in stroke rehabilitation has developed model-based algorithms to control the application of functional electrical stimulation to the upper limb of stroke patients with incomplete paralysis to assist in reaching tasks. This, in turn, requires the identification of the response of a human muscle to electrical stimulation. In this chapter an overview of the progress reported in the literature is given together with some currently open research questions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Parker, V.M., Wade, D.T., Langton-Hewer, R.: Loss of arm function after stroke: measurement, frequency and recovery. Int. Rehabil. Med. 8(4), 69–73 (1986) Parker, V.M., Wade, D.T., Langton-Hewer, R.: Loss of arm function after stroke: measurement, frequency and recovery. Int. Rehabil. Med. 8(4), 69–73 (1986)
2.
Zurück zum Zitat Broeks, J.G., Lankhorst, G.J., Rumping, K., Previo, A.J.: The long-term outcome of arm function after stroke: results of a follow-up study. Disabil. Rehabil. 21, 357–364 (1999) CrossRef Broeks, J.G., Lankhorst, G.J., Rumping, K., Previo, A.J.: The long-term outcome of arm function after stroke: results of a follow-up study. Disabil. Rehabil. 21, 357–364 (1999) CrossRef
3.
Zurück zum Zitat de Kroon, J.R., van der Lee, J.H., Ijzerman, M.J., Lankhorst, G.J.: Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clin. Rehabil. 16(4), 350–360 (2002) CrossRef de Kroon, J.R., van der Lee, J.H., Ijzerman, M.J., Lankhorst, G.J.: Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clin. Rehabil. 16(4), 350–360 (2002) CrossRef
4.
Zurück zum Zitat De Kroon, J.R., Ijzerman, M.J., Chae, J.J., Lankhorst, G.J., Zilvold, G.: Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremety in stroke. J. Rehabil. Med. 37(2), 65–74 (2005) CrossRef De Kroon, J.R., Ijzerman, M.J., Chae, J.J., Lankhorst, G.J., Zilvold, G.: Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremety in stroke. J. Rehabil. Med. 37(2), 65–74 (2005) CrossRef
5.
Zurück zum Zitat Pomeroy, V.M., King, L., Pollack, A., Baily-Hallon, A., Longhorne, P.: Electrostimulation for promoting recovery of movement or functional ability after stroke. The Cochrane Database of Systematic Reviews, Issue 2 (2006) Pomeroy, V.M., King, L., Pollack, A., Baily-Hallon, A., Longhorne, P.: Electrostimulation for promoting recovery of movement or functional ability after stroke. The Cochrane Database of Systematic Reviews, Issue 2 (2006)
6.
Zurück zum Zitat Burridge, J.H., Ladouceur, M.: Clinical and therapeutic applications of neuromuscular stimulation: a review of current use and speculation into future developments. Neuromodulation 4(4), 147–154 (2001) CrossRef Burridge, J.H., Ladouceur, M.: Clinical and therapeutic applications of neuromuscular stimulation: a review of current use and speculation into future developments. Neuromodulation 4(4), 147–154 (2001) CrossRef
7.
Zurück zum Zitat Rushton, D.N.: Functional electrical stimulation and rehabilitation—an hypothesis. Med. Eng. Phys. 25(1), 75–78 (2003) CrossRef Rushton, D.N.: Functional electrical stimulation and rehabilitation—an hypothesis. Med. Eng. Phys. 25(1), 75–78 (2003) CrossRef
8.
Zurück zum Zitat Le, F., Markovsky, I., Freeman, C.T., Rogers, E.: Identification of electrically stimulated muscle models of stroke patients. Control Eng. Pract. 18(4), 396–407 (2010) CrossRef Le, F., Markovsky, I., Freeman, C.T., Rogers, E.: Identification of electrically stimulated muscle models of stroke patients. Control Eng. Pract. 18(4), 396–407 (2010) CrossRef
9.
Zurück zum Zitat Thorsen, R., Spadone, R., Ferrarin, M.: A pilot study of myoelectrically controlled FES of upper extremity. IEEE Trans. Neural Syst. Rehabil. Eng. 9(2), 161–168 (2001) CrossRef Thorsen, R., Spadone, R., Ferrarin, M.: A pilot study of myoelectrically controlled FES of upper extremity. IEEE Trans. Neural Syst. Rehabil. Eng. 9(2), 161–168 (2001) CrossRef
10.
Zurück zum Zitat Baker, L.L., McNeal, D.R., Benton, L.A., Bowman, B.R., Waters, R.L.: NeuroMuscular Electrical Stimulation: A Practical Guide, 3rd edn. (1993) Baker, L.L., McNeal, D.R., Benton, L.A., Bowman, B.R., Waters, R.L.: NeuroMuscular Electrical Stimulation: A Practical Guide, 3rd edn. (1993)
11.
Zurück zum Zitat Freeman, C.T., Hughes, A.-M., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: Iterative learning control of FES applied to the upper extremity for rehabilitation. Control Eng. Pract. 17(3), 368–381 (2009) CrossRef Freeman, C.T., Hughes, A.-M., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: Iterative learning control of FES applied to the upper extremity for rehabilitation. Control Eng. Pract. 17(3), 368–381 (2009) CrossRef
12.
Zurück zum Zitat Freeman, C.T., Hughes, A.-M., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: A robotic workstation for stroke rehabilitation of the upper extremity using FES. Med. Eng. Phys. 31(3), 364–373 (2009) CrossRef Freeman, C.T., Hughes, A.-M., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: A robotic workstation for stroke rehabilitation of the upper extremity using FES. Med. Eng. Phys. 31(3), 364–373 (2009) CrossRef
13.
Zurück zum Zitat Freeman, C.T., Hughes, A.-M., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: A model of the upper extremity using surface FES for stroke rehabilitation. J. Biomed. Eng. 131(1), 031011 (2009) Freeman, C.T., Hughes, A.-M., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: A model of the upper extremity using surface FES for stroke rehabilitation. J. Biomed. Eng. 131(1), 031011 (2009)
14.
Zurück zum Zitat Hughes, A.-M., Freeman, C.T., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. Neurorehabil. Neural Repair 23(6), 559–568 (2009) CrossRef Hughes, A.-M., Freeman, C.T., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. Neurorehabil. Neural Repair 23(6), 559–568 (2009) CrossRef
15.
Zurück zum Zitat Arimoto, S., Kawamura, S., Miyazaki, F.: Bettering operations of robots by learning. J. Robot. Syst. 1, 123–140 (1984) CrossRef Arimoto, S., Kawamura, S., Miyazaki, F.: Bettering operations of robots by learning. J. Robot. Syst. 1, 123–140 (1984) CrossRef
16.
Zurück zum Zitat Bristow, D.A., Tharayil, M., Alleyne, A.G.: A survey of iterative learning control. IEEE Control Syst. Mag. 26(3), 96–114 (2006) CrossRef Bristow, D.A., Tharayil, M., Alleyne, A.G.: A survey of iterative learning control. IEEE Control Syst. Mag. 26(3), 96–114 (2006) CrossRef
17.
Zurück zum Zitat Ahn, H.-S., Chen, Y., Moore, K.L.: Iterative learning control: brief survey and categorization. IEEE Trans. Syst. Man Cybern. 37(6), 1109–1121 (2007) Ahn, H.-S., Chen, Y., Moore, K.L.: Iterative learning control: brief survey and categorization. IEEE Trans. Syst. Man Cybern. 37(6), 1109–1121 (2007)
18.
Zurück zum Zitat Popovic, D., Popovic, M.: Tuning of a nonanalytical hierarchical control system for reaching with FES. IEEE Trans. Biomed. Eng. 45(2), 203–212 (1998) CrossRef Popovic, D., Popovic, M.: Tuning of a nonanalytical hierarchical control system for reaching with FES. IEEE Trans. Biomed. Eng. 45(2), 203–212 (1998) CrossRef
19.
Zurück zum Zitat Crago, P.E., Nakai, R.J., Chizeck, H.J.: Feedback regulation of hand grasp opening and contact force during stimulation of paralysed muscle. IEEE Trans. Biomed. Eng. 38(1), 17–28 (1991) CrossRef Crago, P.E., Nakai, R.J., Chizeck, H.J.: Feedback regulation of hand grasp opening and contact force during stimulation of paralysed muscle. IEEE Trans. Biomed. Eng. 38(1), 17–28 (1991) CrossRef
20.
Zurück zum Zitat Chizeck, H.J., Lan, N., Palmieri, L.S., Crago, P.L.: Feedback control of electrically stimulated muscle using simultaneous pulse width and stimulus period modulation. IEEE Trans. Biomed. Eng. 38(12), 1224–1234 (1991) CrossRef Chizeck, H.J., Lan, N., Palmieri, L.S., Crago, P.L.: Feedback control of electrically stimulated muscle using simultaneous pulse width and stimulus period modulation. IEEE Trans. Biomed. Eng. 38(12), 1224–1234 (1991) CrossRef
21.
Zurück zum Zitat Watanabe, T., Iibuchi, K., Kurosawa, K., Hoshimiya, N.: A method of multichannel PID control of two-degree-of-freedom wrist joint movements by functional electrical stimulation. Syst. Comput. Jpn. 34(5), 319–328 (2003) CrossRef Watanabe, T., Iibuchi, K., Kurosawa, K., Hoshimiya, N.: A method of multichannel PID control of two-degree-of-freedom wrist joint movements by functional electrical stimulation. Syst. Comput. Jpn. 34(5), 319–328 (2003) CrossRef
22.
Zurück zum Zitat Hatwell, M.S., Oderkerk, B.J., Sacher, C.A., Inbar, G.F.: Patient-driven control of FES-supported standing up: a simulation study. IEEE Trans. Rehabil. Eng. 36(6), 683–691 (1991) MathSciNet Hatwell, M.S., Oderkerk, B.J., Sacher, C.A., Inbar, G.F.: Patient-driven control of FES-supported standing up: a simulation study. IEEE Trans. Rehabil. Eng. 36(6), 683–691 (1991) MathSciNet
23.
Zurück zum Zitat Previdi, F., Schauer, T., Savaresi, S.M., Hunt, K.J.: Data-driven control design for neuroprotheses: a virtual reference feedback tuning (VRFT) approach. IEEE Trans. Control Syst. Technol. 12(1), 176–182 (2004) CrossRef Previdi, F., Schauer, T., Savaresi, S.M., Hunt, K.J.: Data-driven control design for neuroprotheses: a virtual reference feedback tuning (VRFT) approach. IEEE Trans. Control Syst. Technol. 12(1), 176–182 (2004) CrossRef
24.
Zurück zum Zitat Hill, A.V.: Then heat of shortening and the dynamic constants of a muscle. Proc. R. Soc. Lond. B, Biol. Sci. 126, 136–195 (1938) CrossRef Hill, A.V.: Then heat of shortening and the dynamic constants of a muscle. Proc. R. Soc. Lond. B, Biol. Sci. 126, 136–195 (1938) CrossRef
25.
Zurück zum Zitat Lan, N.: Stability analysis for postural control in a two-joint limb system. IEEE Trans. Neural Syst. Rehabil. Eng. 10(4), 249–259 (2002) MathSciNetCrossRef Lan, N.: Stability analysis for postural control in a two-joint limb system. IEEE Trans. Neural Syst. Rehabil. Eng. 10(4), 249–259 (2002) MathSciNetCrossRef
26.
Zurück zum Zitat Riener, R., Fuhr, T.: Patient-driven control of FES-supported standing up: a simulation study. IEEE Trans. Rehabil. Eng. 6(2), 113–124 (1998) CrossRef Riener, R., Fuhr, T.: Patient-driven control of FES-supported standing up: a simulation study. IEEE Trans. Rehabil. Eng. 6(2), 113–124 (1998) CrossRef
27.
Zurück zum Zitat Jezernik, S., Wassink, R.G.V., Keller, T.: Sliding mode closed-loop control of FES: controlling the shank movement. IEEE Trans. Rehabil. Eng. 51(2), 263–272 (2004) Jezernik, S., Wassink, R.G.V., Keller, T.: Sliding mode closed-loop control of FES: controlling the shank movement. IEEE Trans. Rehabil. Eng. 51(2), 263–272 (2004)
28.
Zurück zum Zitat Schauer, T., Negard, N.O., Previdi, F., Hunt, K.J., Fraser, M.H., Ferchland, E., Raisch, J.: Online identification and nonlinear control of the electrically stimulated quadriceps muscle. Control Eng. Pract. 13(9), 1207–1219 (2005) CrossRef Schauer, T., Negard, N.O., Previdi, F., Hunt, K.J., Fraser, M.H., Ferchland, E., Raisch, J.: Online identification and nonlinear control of the electrically stimulated quadriceps muscle. Control Eng. Pract. 13(9), 1207–1219 (2005) CrossRef
29.
Zurück zum Zitat Ferrarin, M., Palazzo, F., Riener, R., Quintern, J.: Model-based control of FES induced single joint movements. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 245–257 (2001) CrossRef Ferrarin, M., Palazzo, F., Riener, R., Quintern, J.: Model-based control of FES induced single joint movements. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 245–257 (2001) CrossRef
30.
Zurück zum Zitat Hunt, K.J., Munih, M., Donaldson, N.N., Barr, F.M.D.: Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle. IEEE Trans. Rehabil. Eng. 45(8), 998–1009 (1998) Hunt, K.J., Munih, M., Donaldson, N.N., Barr, F.M.D.: Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle. IEEE Trans. Rehabil. Eng. 45(8), 998–1009 (1998)
31.
Zurück zum Zitat Reiner, R., Quintern, J.: A physiologically based model of muscle activation verified by electrical stimulation. Bioelectrochem. Bioenerg. 43, 257–264 (1997) CrossRef Reiner, R., Quintern, J.: A physiologically based model of muscle activation verified by electrical stimulation. Bioelectrochem. Bioenerg. 43, 257–264 (1997) CrossRef
32.
Zurück zum Zitat Previdi, F., Carpanzano, E.: Design of a gain scheduling controller for knee-joint angle control by using functional electrical stimulation. IEEE Trans. Control Syst. Technol. 11(3), 310–324 (2003) CrossRef Previdi, F., Carpanzano, E.: Design of a gain scheduling controller for knee-joint angle control by using functional electrical stimulation. IEEE Trans. Control Syst. Technol. 11(3), 310–324 (2003) CrossRef
33.
Zurück zum Zitat Happee, R., Van der Helm, F.C.T.V.: The control of shoulder muscles during goal directed movements, an inverse dynamic analysis. J. Biomed. Eng. 28(10), 1179–1191 (1995) Happee, R., Van der Helm, F.C.T.V.: The control of shoulder muscles during goal directed movements, an inverse dynamic analysis. J. Biomed. Eng. 28(10), 1179–1191 (1995)
34.
Zurück zum Zitat Durfee, W.K., MacLean, K.E.: Methods for estimating isometric recruitment curves of electrically stimulated muscle. IEEE Trans. Biomed. Eng. 36(7), 654–667 (1989) CrossRef Durfee, W.K., MacLean, K.E.: Methods for estimating isometric recruitment curves of electrically stimulated muscle. IEEE Trans. Biomed. Eng. 36(7), 654–667 (1989) CrossRef
35.
Zurück zum Zitat Baratta, R., Solomonow, M.: The dynamic response model of nine different skeletal muscles. IEEE Trans. Biomed. Eng. 37(3), 243–251 (1990) CrossRef Baratta, R., Solomonow, M.: The dynamic response model of nine different skeletal muscles. IEEE Trans. Biomed. Eng. 37(3), 243–251 (1990) CrossRef
36.
Zurück zum Zitat Veltink, P.H., Chizeck, H.J., Crago, P.E., El-Bialy, A.: Nonlinear joint angle control for artificially stimulate muscle. IEEE Trans. Biomed. Eng. 39(4), 368–380 (1992) CrossRef Veltink, P.H., Chizeck, H.J., Crago, P.E., El-Bialy, A.: Nonlinear joint angle control for artificially stimulate muscle. IEEE Trans. Biomed. Eng. 39(4), 368–380 (1992) CrossRef
37.
Zurück zum Zitat Chizeck, H.J., Crago, P.E., Kofman, L.S.: Robust closed-Loop control of isometric muscle force using pulsewidth modulation. IEEE Trans. Biomed. Eng. 35(7), 510–517 (1988) CrossRef Chizeck, H.J., Crago, P.E., Kofman, L.S.: Robust closed-Loop control of isometric muscle force using pulsewidth modulation. IEEE Trans. Biomed. Eng. 35(7), 510–517 (1988) CrossRef
38.
Zurück zum Zitat Bernotas, L., Crago, P.E., Chizeck, H.J.: A discrete-time model of electrically stimulated muscle. IEEE Trans. Biomed. Eng. 33(9), 829–838 (1986) CrossRef Bernotas, L., Crago, P.E., Chizeck, H.J.: A discrete-time model of electrically stimulated muscle. IEEE Trans. Biomed. Eng. 33(9), 829–838 (1986) CrossRef
39.
Zurück zum Zitat Durfee, W.K., Palmer, K.L.: Estimation of force-activation, force-length, and force-velocity properties in isolated, electrically stimulated muscle. IEEE Trans. Biomed. Eng. 41(3), 205–216 (1994) CrossRef Durfee, W.K., Palmer, K.L.: Estimation of force-activation, force-length, and force-velocity properties in isolated, electrically stimulated muscle. IEEE Trans. Biomed. Eng. 41(3), 205–216 (1994) CrossRef
40.
Zurück zum Zitat Crago, P.E., Peckham, P.H., Thorpe, G.B.: Modulation of muscle force by recruitment during intramuscular stimulation. IEEE Trans. Biomed. Eng. 27(12), 679–684 (1980) CrossRef Crago, P.E., Peckham, P.H., Thorpe, G.B.: Modulation of muscle force by recruitment during intramuscular stimulation. IEEE Trans. Biomed. Eng. 27(12), 679–684 (1980) CrossRef
41.
Zurück zum Zitat Ding, J., Wexler, A.S., Binder-MacLeod, S.A.: A mathematical model that predicts the force-frequency relationship of human skeletal muscle. Muscle Nerve 26(2), 477–485 (2002) CrossRef Ding, J., Wexler, A.S., Binder-MacLeod, S.A.: A mathematical model that predicts the force-frequency relationship of human skeletal muscle. Muscle Nerve 26(2), 477–485 (2002) CrossRef
42.
Zurück zum Zitat Carroll, S.G., Triolo, R.J., Chizeck, H.J., Kobetic, R., Marsolias, E.B.: Tetanic responses of electrically stimulated paralyzed muscle at varying interpulse intervals. IEEE Trans. Biomed. Eng. 36(7), 644–653 (1989) CrossRef Carroll, S.G., Triolo, R.J., Chizeck, H.J., Kobetic, R., Marsolias, E.B.: Tetanic responses of electrically stimulated paralyzed muscle at varying interpulse intervals. IEEE Trans. Biomed. Eng. 36(7), 644–653 (1989) CrossRef
43.
Zurück zum Zitat Dempsey, E.J., Westwick, D.T.: Identification of Hammerstein models with cubic spline nonlinearities. IEEE Trans. Biomed. Eng. 51(2), 237–245 (2004) CrossRef Dempsey, E.J., Westwick, D.T.: Identification of Hammerstein models with cubic spline nonlinearities. IEEE Trans. Biomed. Eng. 51(2), 237–245 (2004) CrossRef
44.
45.
Zurück zum Zitat Zhu, Y.: Identification of Hammerstein models for control using ASYM. Int. J. Control 73(18), 1692–1702 (2000) MATHCrossRef Zhu, Y.: Identification of Hammerstein models for control using ASYM. Int. J. Control 73(18), 1692–1702 (2000) MATHCrossRef
46.
Zurück zum Zitat Graham, G.M., Thrasher, T.A., Popovic, M.R.: The effect of random modulation of functional electrical stimulation parameters on muscle fatigue. IEEE Trans. Neural Syst. Rehabil. Eng. 14(1), 38–45 (2006) CrossRef Graham, G.M., Thrasher, T.A., Popovic, M.R.: The effect of random modulation of functional electrical stimulation parameters on muscle fatigue. IEEE Trans. Neural Syst. Rehabil. Eng. 14(1), 38–45 (2006) CrossRef
47.
Zurück zum Zitat Le, F., Markovsky, I., Freeman, C.T., Rogers, E.: Identification of electrically stimulated muscle after stroke. In: Proc. European Control Conference, pp. 3208–3213 (2009) Le, F., Markovsky, I., Freeman, C.T., Rogers, E.: Identification of electrically stimulated muscle after stroke. In: Proc. European Control Conference, pp. 3208–3213 (2009)
48.
Zurück zum Zitat Bako, L., Mercere, G., Lecoeuche, S., Lovera, M.: Recursive subspace identification of Hammerstein models based on least squares support vector machines. IET Proc. D 3(9), 1209–1216 (2009) MathSciNet Bako, L., Mercere, G., Lecoeuche, S., Lovera, M.: Recursive subspace identification of Hammerstein models based on least squares support vector machines. IET Proc. D 3(9), 1209–1216 (2009) MathSciNet
49.
Zurück zum Zitat Greblicki, W.: Stochastic approximation in nonparametric identification of Hammerstein systems. IEEE Trans. Autom. Control 47(11), 1800–1810 (2002) MathSciNetCrossRef Greblicki, W.: Stochastic approximation in nonparametric identification of Hammerstein systems. IEEE Trans. Autom. Control 47(11), 1800–1810 (2002) MathSciNetCrossRef
50.
Zurück zum Zitat Chen, H.F.: Pathwise convergence of recursive identification algorithms for Hammerstein systems. IEEE Trans. Autom. Control 49(4), 1641–1649 (2004) CrossRef Chen, H.F.: Pathwise convergence of recursive identification algorithms for Hammerstein systems. IEEE Trans. Autom. Control 49(4), 1641–1649 (2004) CrossRef
51.
Zurück zum Zitat Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333–338 (1998) MathSciNetMATHCrossRef Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333–338 (1998) MathSciNetMATHCrossRef
52.
Zurück zum Zitat Chang, F.H.I., Luus, R.: A non-iterative method for identification using Hammerstein model. IEEE Trans. Autom. Control 16(5), 464–468 (1971) CrossRef Chang, F.H.I., Luus, R.: A non-iterative method for identification using Hammerstein model. IEEE Trans. Autom. Control 16(5), 464–468 (1971) CrossRef
53.
Zurück zum Zitat Zhao, W.X., Chen, H.F.: Adaptive tracking and recursive identification for Hammerstein systems. Automatica, 45(12), 2773–2783 (2009) MathSciNetMATHCrossRef Zhao, W.X., Chen, H.F.: Adaptive tracking and recursive identification for Hammerstein systems. Automatica, 45(12), 2773–2783 (2009) MathSciNetMATHCrossRef
54.
Zurück zum Zitat Chia, T.L., Chow, P.C., Chizeck, H.J.: Recursive parameter identification of constrained systems: an application to electrically stimulated muscle. IEEE Trans. Biomed. Eng. 38(5), 429–442 (1991) CrossRef Chia, T.L., Chow, P.C., Chizeck, H.J.: Recursive parameter identification of constrained systems: an application to electrically stimulated muscle. IEEE Trans. Biomed. Eng. 38(5), 429–442 (1991) CrossRef
55.
Zurück zum Zitat Ponikvar, M., Munih, M.: Setup and procedure for online identification of electrically stimulated muscle With Matlab Simulink. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 295–301 (2001) CrossRef Ponikvar, M., Munih, M.: Setup and procedure for online identification of electrically stimulated muscle With Matlab Simulink. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 295–301 (2001) CrossRef
Metadaten
Titel
Progress and Open Questions in the Identification of Electrically Stimulated Human Muscle for Stroke Rehabilitation
verfasst von
Fengmin Le
Chris T. Freeman
Ivan Markovsky
Eric Rogers
Copyright-Jahr
2012
Verlag
Springer London
DOI
https://doi.org/10.1007/978-0-85729-974-1_15

Neuer Inhalt