Skip to main content
Erschienen in: Journal of Materials Science 12/2018

12.03.2018 | Review

Progress in Ni-based anode materials for direct hydrocarbon solid oxide fuel cells

verfasst von: Kangwei Wei, Xinxin Wang, Riyan Achmad Budiman, Jianhong Kang, Bin Lin, Fubao Zhou, Yihan Ling

Erschienen in: Journal of Materials Science | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ni-based anode materials of solid oxide fuel cells (SOFCs) are susceptible to carbon deposition and deactivation in direct hydrocarbon fuels, greatly limiting the commercialization. Extensive studies on finding new alternative anode materials have been developed; however, new problems such as low electrochemical performance and complex cell preparation process destroyed the further research passion of Ni-free anode materials. Considering the superior catalytic activity and mature technology of Ni-based anode materials, a large number of recent research results proved that it is still important and promising to solve the carbon coking of Ni-based anode materials. In this review, progress in four typically promising Ni-based anode materials free from carbon coking has been summarized, including the noble metals, ceria, Ba-containing oxides and titanium oxide. Correspondingly, the mechanisms that improve the carbon tolerance of Ni-based modified SOFCs anodes are clearly concluded, providing the materials and theoretical basis for the use of direct hydrocarbon SOFCs as early as possible.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen H, Wang F, Wang W, Chen D, Li SD, Shao Z (2016) H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels. Appl Energy 179:765–777CrossRef Chen H, Wang F, Wang W, Chen D, Li SD, Shao Z (2016) H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels. Appl Energy 179:765–777CrossRef
2.
Zurück zum Zitat Liu M, Lynch ME, Blinn K, Alamgir FM, Choi YM (2011) Rational SOFC material design: new advances and tools. Mater Today 14:534–546CrossRef Liu M, Lynch ME, Blinn K, Alamgir FM, Choi YM (2011) Rational SOFC material design: new advances and tools. Mater Today 14:534–546CrossRef
3.
Zurück zum Zitat He H, Hill JM (2007) Carbon deposition on Ni/YSZ composites exposed to humidified methane. Appl Catal A Gen 317:284–292CrossRef He H, Hill JM (2007) Carbon deposition on Ni/YSZ composites exposed to humidified methane. Appl Catal A Gen 317:284–292CrossRef
4.
Zurück zum Zitat Koh JH, Yoo YS, Park JW, Lim HC (2002) Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel. Solid State Ion 149:157–166CrossRef Koh JH, Yoo YS, Park JW, Lim HC (2002) Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel. Solid State Ion 149:157–166CrossRef
5.
Zurück zum Zitat Khan MS, Lee SB, Song RH, Lee JW, Lim TH, Park SJ (2016) Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: a review. Ceram Int 42:35–48CrossRef Khan MS, Lee SB, Song RH, Lee JW, Lim TH, Park SJ (2016) Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: a review. Ceram Int 42:35–48CrossRef
6.
Zurück zum Zitat Sun C, Stimming U (2007) Recent anode advances in solid oxide fuel cells. J Power Sources 171:247–260CrossRef Sun C, Stimming U (2007) Recent anode advances in solid oxide fuel cells. J Power Sources 171:247–260CrossRef
7.
Zurück zum Zitat Mcintosh S, Gorte RJ (2004) Direct hydrocarbon solid oxide fuel cells. Chem Rev 104:4845–4866CrossRef Mcintosh S, Gorte RJ (2004) Direct hydrocarbon solid oxide fuel cells. Chem Rev 104:4845–4866CrossRef
8.
Zurück zum Zitat Boldrin P, Ruiztrejo E, Mermelstein J, Menendez JMB, Reina TR, Brandon NP (2016) Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem Rev 116:13633–13684CrossRef Boldrin P, Ruiztrejo E, Mermelstein J, Menendez JMB, Reina TR, Brandon NP (2016) Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem Rev 116:13633–13684CrossRef
9.
Zurück zum Zitat Wang W, Su C, Wu Y, Ran R, Shao Z (2013) Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem Rev 113:8104–8151CrossRef Wang W, Su C, Wu Y, Ran R, Shao Z (2013) Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem Rev 113:8104–8151CrossRef
10.
Zurück zum Zitat Shaikh SPS, Muchtar A, Somalu MR (2015) A review on the selection of anode materials for solid-oxide fuel cells. Renew Sustain Energy Rev 51:1–8CrossRef Shaikh SPS, Muchtar A, Somalu MR (2015) A review on the selection of anode materials for solid-oxide fuel cells. Renew Sustain Energy Rev 51:1–8CrossRef
12.
Zurück zum Zitat Niakolas DK, Ouweltjes JP, Rietveld G, Dracopoulos V, Neophytides SG (2010) Au-doped Ni/GDC as a new anode for SOFCs operating under rich CH4 internal steam reforming. Int J Hydrog Energy 35:7898–7904CrossRef Niakolas DK, Ouweltjes JP, Rietveld G, Dracopoulos V, Neophytides SG (2010) Au-doped Ni/GDC as a new anode for SOFCs operating under rich CH4 internal steam reforming. Int J Hydrog Energy 35:7898–7904CrossRef
13.
Zurück zum Zitat Li M, Hua B, Luo J, Jiang SP, Pu J, Chi B, Jian L (2015) Carbon-tolerant Ni-based cermet anodes modified by proton conducting yttrium- and ytterbium-doped barium cerates for direct methane solid oxide fuel cells. J Mater Chem A3:21609–21617CrossRef Li M, Hua B, Luo J, Jiang SP, Pu J, Chi B, Jian L (2015) Carbon-tolerant Ni-based cermet anodes modified by proton conducting yttrium- and ytterbium-doped barium cerates for direct methane solid oxide fuel cells. J Mater Chem A3:21609–21617CrossRef
14.
Zurück zum Zitat Cheng H, Feng S, Wei T, Lu X, Yao W, Li G, Zhou Z (2014) Effects of noble metal-doping on Ni/La2O3–ZrO2 catalysts for dry reforming of coke oven gas. Int J Hydrog Energy 39:12604–12612CrossRef Cheng H, Feng S, Wei T, Lu X, Yao W, Li G, Zhou Z (2014) Effects of noble metal-doping on Ni/La2O3–ZrO2 catalysts for dry reforming of coke oven gas. Int J Hydrog Energy 39:12604–12612CrossRef
15.
Zurück zum Zitat Hua B, Zhang W, Li M, Wang X, Chi B, Pu J, Li J (2014) Improved microstructure and performance of Ni-based anode for intermediate temperature solid oxide fuel cells. J Power Sources 247:170–177CrossRef Hua B, Zhang W, Li M, Wang X, Chi B, Pu J, Li J (2014) Improved microstructure and performance of Ni-based anode for intermediate temperature solid oxide fuel cells. J Power Sources 247:170–177CrossRef
16.
Zurück zum Zitat Kan H, Lee H (2010) Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel. Catal Commun 12:36–39CrossRef Kan H, Lee H (2010) Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel. Catal Commun 12:36–39CrossRef
17.
Zurück zum Zitat Nikolla E, Schwan KJ, Linic S (2007) Promotion of the long-term stability of reforming Ni catalysts by surface alloying. J Catal 250:85–93CrossRef Nikolla E, Schwan KJ, Linic S (2007) Promotion of the long-term stability of reforming Ni catalysts by surface alloying. J Catal 250:85–93CrossRef
18.
Zurück zum Zitat Park EW, Moon H, Park MS, Sang HH (2009) Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating. Int J Hydrog Energy 34:5537–5545CrossRef Park EW, Moon H, Park MS, Sang HH (2009) Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating. Int J Hydrog Energy 34:5537–5545CrossRef
19.
Zurück zum Zitat Hua B, Li M, Pu J, Chi B, Jian L (2014) BaZrCeYYbO enhanced coking-free on-cell reforming for direct-methane solid oxide fuel cells. J Mater Chem A 2:12576–12582CrossRef Hua B, Li M, Pu J, Chi B, Jian L (2014) BaZrCeYYbO enhanced coking-free on-cell reforming for direct-methane solid oxide fuel cells. J Mater Chem A 2:12576–12582CrossRef
20.
Zurück zum Zitat Asamoto M, Miyake S, Sugihara K, Yahiro H (2009) Improvement of Ni/SDC anode by alkaline earth metal oxide addition for direct methane–solid oxide fuel cells. Electrochem Commun 11:1508–1511CrossRef Asamoto M, Miyake S, Sugihara K, Yahiro H (2009) Improvement of Ni/SDC anode by alkaline earth metal oxide addition for direct methane–solid oxide fuel cells. Electrochem Commun 11:1508–1511CrossRef
21.
Zurück zum Zitat Guo J, Lou H, Mo L, Zheng X (2010) The reactivity of surface active carbonaceous species with CO2 and its role on hydrocarbon conversion reactions. J Mol Catal A Chem 316:1–7CrossRef Guo J, Lou H, Mo L, Zheng X (2010) The reactivity of surface active carbonaceous species with CO2 and its role on hydrocarbon conversion reactions. J Mol Catal A Chem 316:1–7CrossRef
22.
Zurück zum Zitat Li J, Liu G, Croiset E (2017) Two-dimensional mechanistic solid oxide fuel cell model with revised detailed methane reforming mechanism. Electrochim Acta 249:216–226CrossRef Li J, Liu G, Croiset E (2017) Two-dimensional mechanistic solid oxide fuel cell model with revised detailed methane reforming mechanism. Electrochim Acta 249:216–226CrossRef
23.
Zurück zum Zitat Kim T, Liu G, Boaro M, Lee SI, Vohs JM, Gorte RJ, Almadhi OH, Dabbousi BO (2006) A study of carbon formation and prevention in hydrocarbon-fueled SOFC. J Power Sources 155:231–238CrossRef Kim T, Liu G, Boaro M, Lee SI, Vohs JM, Gorte RJ, Almadhi OH, Dabbousi BO (2006) A study of carbon formation and prevention in hydrocarbon-fueled SOFC. J Power Sources 155:231–238CrossRef
24.
Zurück zum Zitat Li H, Tian Y, Wang Z, Qie F, Li Y (2012) An all perovskite direct methanol solid oxide fuel cell with high resistance to carbon formation at the anode. RSC Adv 2:3857–3863CrossRef Li H, Tian Y, Wang Z, Qie F, Li Y (2012) An all perovskite direct methanol solid oxide fuel cell with high resistance to carbon formation at the anode. RSC Adv 2:3857–3863CrossRef
25.
Zurück zum Zitat Hu B, Keane M, Patil K, Mahapatra MK, Pasaogullari U, Singh P (2014) Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells. Appl Energy 134:342–348CrossRef Hu B, Keane M, Patil K, Mahapatra MK, Pasaogullari U, Singh P (2014) Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells. Appl Energy 134:342–348CrossRef
26.
Zurück zum Zitat Qu J, Wang W, Chen Y, Wang F, Ran R, Shao Z (2015) Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes. Appl Energy 148:1–9CrossRef Qu J, Wang W, Chen Y, Wang F, Ran R, Shao Z (2015) Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes. Appl Energy 148:1–9CrossRef
27.
Zurück zum Zitat Won JY, Sohn HJ, Song RH, Woo SI (2009) Glycerol as a bioderived sustainable fuel for solid-oxide fuel cells with internal reforming. ChemSusChem 2:1028–1031CrossRef Won JY, Sohn HJ, Song RH, Woo SI (2009) Glycerol as a bioderived sustainable fuel for solid-oxide fuel cells with internal reforming. ChemSusChem 2:1028–1031CrossRef
29.
Zurück zum Zitat Girona K, Laurencin J, Fouletier J, Lefebvre-Joud F (2012) Carbon deposition in CH4/CO2 operated SOFC: simulation and experimentation studies. J Power Sources 210:381–391CrossRef Girona K, Laurencin J, Fouletier J, Lefebvre-Joud F (2012) Carbon deposition in CH4/CO2 operated SOFC: simulation and experimentation studies. J Power Sources 210:381–391CrossRef
30.
Zurück zum Zitat Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases—II. The C–H–O ternary diagrams. J Electrochem Soc 150:A885–A888CrossRef Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases—II. The C–H–O ternary diagrams. J Electrochem Soc 150:A885–A888CrossRef
31.
Zurück zum Zitat Li M, Hua B, Luo JL (2017) Alternative fuel cell technologies for cogenerating electrical power and syngas from greenhouse gases. ACS Energy Lett 2:1789–1796CrossRef Li M, Hua B, Luo JL (2017) Alternative fuel cell technologies for cogenerating electrical power and syngas from greenhouse gases. ACS Energy Lett 2:1789–1796CrossRef
32.
Zurück zum Zitat Wang W, Wang F, Ran R, Park HJ, Jung DW, Kwak C, Shao ZP (2014) Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive. J Power Sources 265:20–29CrossRef Wang W, Wang F, Ran R, Park HJ, Jung DW, Kwak C, Shao ZP (2014) Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive. J Power Sources 265:20–29CrossRef
33.
Zurück zum Zitat Kaur G, Basu S (2015) Physical characterization and electrochemical performance of copper–iron–ceria-YSZ anode-based SOFCs in H2 and methane fuels. Int J Energy Res 39:1345–1354CrossRef Kaur G, Basu S (2015) Physical characterization and electrochemical performance of copper–iron–ceria-YSZ anode-based SOFCs in H2 and methane fuels. Int J Energy Res 39:1345–1354CrossRef
34.
Zurück zum Zitat Kaur G, Basu S (2014) Study of carbon deposition behavior on Cu–Co/CeO2–YSZ anodes for direct butane solid oxide fuel cells. Fuel Cells 14:1006–1013CrossRef Kaur G, Basu S (2014) Study of carbon deposition behavior on Cu–Co/CeO2–YSZ anodes for direct butane solid oxide fuel cells. Fuel Cells 14:1006–1013CrossRef
35.
Zurück zum Zitat Cimenti M, Hill JM (2009) Direct utilization of ethanol on ceria-based anodes for solid oxide fuel cells. Asia Pac J Chem Eng 4:45–54CrossRef Cimenti M, Hill JM (2009) Direct utilization of ethanol on ceria-based anodes for solid oxide fuel cells. Asia Pac J Chem Eng 4:45–54CrossRef
36.
Zurück zum Zitat Tao S, Irvine JT, Plint SM (2006) Methane oxidation at redox stable fuel cell electrode La0.75Sr0.25Cr0.5Mn0.5O(3-delta). J Phys Chem B 110:21771–21776CrossRef Tao S, Irvine JT, Plint SM (2006) Methane oxidation at redox stable fuel cell electrode La0.75Sr0.25Cr0.5Mn0.5O(3-delta). J Phys Chem B 110:21771–21776CrossRef
37.
Zurück zum Zitat Ruiz-Morales JC, Canales-Vázquez J, Savaniu C, Marrero-López D, Zhou W, Irvine JTS (2006) Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 439:568–571CrossRef Ruiz-Morales JC, Canales-Vázquez J, Savaniu C, Marrero-López D, Zhou W, Irvine JTS (2006) Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 439:568–571CrossRef
38.
Zurück zum Zitat Buccheri MA, Hill JM (2011) Gas products analysis during the electrochemical conversion of dry methane with a La0.3Sr0.7TiO3 and Ni/YSZ bi-layer SOFC anode. ECS Trans 35:1551–1561CrossRef Buccheri MA, Hill JM (2011) Gas products analysis during the electrochemical conversion of dry methane with a La0.3Sr0.7TiO3 and Ni/YSZ bi-layer SOFC anode. ECS Trans 35:1551–1561CrossRef
39.
Zurück zum Zitat Mcintosh S, Vohs JM, Gorte RJ (2002) An examination of lanthanide additives on the performance of Cu–YSZ cermet anodes. Electrochim Acta 47:3815–3821CrossRef Mcintosh S, Vohs JM, Gorte RJ (2002) An examination of lanthanide additives on the performance of Cu–YSZ cermet anodes. Electrochim Acta 47:3815–3821CrossRef
40.
Zurück zum Zitat Gorte RJ, Park S, Vohs JM, Wang C (2000) Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv Mater 12:1465–1469CrossRef Gorte RJ, Park S, Vohs JM, Wang C (2000) Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv Mater 12:1465–1469CrossRef
41.
Zurück zum Zitat Pillai MR, Kim I, Bierschenk DM, Barnett SA (2008) Fuel-flexible operation of a solid oxide fuel cell with Sr(0.8)La(0.2)TiO(3) support. J Power Sources 185:1086–1093CrossRef Pillai MR, Kim I, Bierschenk DM, Barnett SA (2008) Fuel-flexible operation of a solid oxide fuel cell with Sr(0.8)La(0.2)TiO(3) support. J Power Sources 185:1086–1093CrossRef
42.
Zurück zum Zitat Marina OA, Canfield NL, Stevenson JW (2002) Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ion 149:21–28CrossRef Marina OA, Canfield NL, Stevenson JW (2002) Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ion 149:21–28CrossRef
43.
Zurück zum Zitat Park K, Lee S, Bae G, Bae J (2015) Performance analysis of Cu, Sn and Rh impregnated NiO/CGO91 anode for butane internal reforming SOFC at intermediate temperature. Renew Energy 83:483–490CrossRef Park K, Lee S, Bae G, Bae J (2015) Performance analysis of Cu, Sn and Rh impregnated NiO/CGO91 anode for butane internal reforming SOFC at intermediate temperature. Renew Energy 83:483–490CrossRef
44.
Zurück zum Zitat Zhu W, Xia C, Fan J, Peng R, Meng G (2006) Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells. J Power Sources 160:897–902CrossRef Zhu W, Xia C, Fan J, Peng R, Meng G (2006) Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells. J Power Sources 160:897–902CrossRef
45.
Zurück zum Zitat Yang L, Choi Y, Qin W, Chen H, Blinn K, Liu M, Liu P, Bai J, Tyson TA, Liu M (2011) Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nat Commun 2:1–9CrossRef Yang L, Choi Y, Qin W, Chen H, Blinn K, Liu M, Liu P, Bai J, Tyson TA, Liu M (2011) Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nat Commun 2:1–9CrossRef
46.
Zurück zum Zitat Wang W, Su C, Ran R, Zhao B, Shao Z, Tade MO, Liu S (2014) Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells. ChemSusChem 7:1719–1728CrossRef Wang W, Su C, Ran R, Zhao B, Shao Z, Tade MO, Liu S (2014) Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells. ChemSusChem 7:1719–1728CrossRef
47.
Zurück zum Zitat Ling Y, Wang Z, Wang Z, Peng R, Lin B, Yu W, Isimjan TT, Lu Y (2015) A robust carbon tolerant anode for solid oxide fuel cells. Sci China Mater 58:204–212CrossRef Ling Y, Wang Z, Wang Z, Peng R, Lin B, Yu W, Isimjan TT, Lu Y (2015) A robust carbon tolerant anode for solid oxide fuel cells. Sci China Mater 58:204–212CrossRef
48.
Zurück zum Zitat Takeguchi T, Kikuchi R, Yano T, Eguchi K, Murata K (2003) Effect of precious metal addition to Ni–YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode. Catal Today 84:217–222CrossRef Takeguchi T, Kikuchi R, Yano T, Eguchi K, Murata K (2003) Effect of precious metal addition to Ni–YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode. Catal Today 84:217–222CrossRef
49.
Zurück zum Zitat Sadykov VA, Mezentseva NV, Bunina RV, Alikina GM, Lukashevich AI, Zaikovskii VI, Bobrenok OF, Irvine J, Vasylyev OD, Smirnova AL (2010) Design of anode materials for IT SOFC: effect of complex oxide promoters and Pt group metals on activity and stability in methane steam reforming of Ni/YSZ (ScSZ) cermets. J Fuel Cell Sci Tech 7:1–6CrossRef Sadykov VA, Mezentseva NV, Bunina RV, Alikina GM, Lukashevich AI, Zaikovskii VI, Bobrenok OF, Irvine J, Vasylyev OD, Smirnova AL (2010) Design of anode materials for IT SOFC: effect of complex oxide promoters and Pt group metals on activity and stability in methane steam reforming of Ni/YSZ (ScSZ) cermets. J Fuel Cell Sci Tech 7:1–6CrossRef
50.
Zurück zum Zitat Li D, Nakagawa Y, Tomishige K (2011) Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Appl Catal A Gen 408:1–24CrossRef Li D, Nakagawa Y, Tomishige K (2011) Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Appl Catal A Gen 408:1–24CrossRef
51.
Zurück zum Zitat Lee HJ, Lim YS, Park NC, Kim YC (2009) Catalytic autothermal reforming of propane over the noble metal-doped hydrotalcite-type catalysts. Chem Eng J 146:295–301CrossRef Lee HJ, Lim YS, Park NC, Kim YC (2009) Catalytic autothermal reforming of propane over the noble metal-doped hydrotalcite-type catalysts. Chem Eng J 146:295–301CrossRef
52.
Zurück zum Zitat Wu JCS, Chou HC (2009) Bimetallic Rh–Ni/BN catalyst for methane reforming with CO2. Chem Eng J 148:539–545CrossRef Wu JCS, Chou HC (2009) Bimetallic Rh–Ni/BN catalyst for methane reforming with CO2. Chem Eng J 148:539–545CrossRef
53.
Zurück zum Zitat Miyata T, Li D, Shiraga M, Shishido T, Oumi Y, Sano T, Takehira K (2006) Promoting effect of Rh, Pd and Pt noble metals to the Ni/Mg(Al)O catalysts for the DSS-like operation in CH4 steam reforming. Appl Catal A Gen 310:97–104CrossRef Miyata T, Li D, Shiraga M, Shishido T, Oumi Y, Sano T, Takehira K (2006) Promoting effect of Rh, Pd and Pt noble metals to the Ni/Mg(Al)O catalysts for the DSS-like operation in CH4 steam reforming. Appl Catal A Gen 310:97–104CrossRef
54.
Zurück zum Zitat Bae G, Bae J, Kim-Lohsoontorn P, Jeong J (2010) Performance of SOFC coupled with n-C4H10 autothermal reformer: carbon deposition and development of anode structure. Int J Hydrog Energy 35:12346–12358CrossRef Bae G, Bae J, Kim-Lohsoontorn P, Jeong J (2010) Performance of SOFC coupled with n-C4H10 autothermal reformer: carbon deposition and development of anode structure. Int J Hydrog Energy 35:12346–12358CrossRef
55.
Zurück zum Zitat Arandiyan H, Peng Y, Liu CX, Chang HZ, Li JH (2014) Effects of noble metals doped on mesoporous LaAlNi mixed oxide catalyst and identification of carbon deposit for reforming CH4 with CO2. J Chem Technol Biotechnol 89:372–381CrossRef Arandiyan H, Peng Y, Liu CX, Chang HZ, Li JH (2014) Effects of noble metals doped on mesoporous LaAlNi mixed oxide catalyst and identification of carbon deposit for reforming CH4 with CO2. J Chem Technol Biotechnol 89:372–381CrossRef
56.
Zurück zum Zitat Mawdsley JR, Krause TR (2008) Rare earth-first-row transition metal perovskites as catalysts for the autothermal reforming of hydrocarbon fuels to generate hydrogen. Appl Catal A Gen 334:311–320CrossRef Mawdsley JR, Krause TR (2008) Rare earth-first-row transition metal perovskites as catalysts for the autothermal reforming of hydrocarbon fuels to generate hydrogen. Appl Catal A Gen 334:311–320CrossRef
57.
Zurück zum Zitat Rezaei M, Alavi SM, Sahebdelfar S, Yan ZF (2006) Syngas production by methane reforming with carbon dioxide on noble metal catalysts. J Energy Chem 15:327–334 Rezaei M, Alavi SM, Sahebdelfar S, Yan ZF (2006) Syngas production by methane reforming with carbon dioxide on noble metal catalysts. J Energy Chem 15:327–334
58.
Zurück zum Zitat Zhu H, Wang W, Ran R, Shao Z (2013) A new nickel-ceria composite for direct-methane solid oxide fuel cells. Int J Hydrog Energy 38:3741–3749CrossRef Zhu H, Wang W, Ran R, Shao Z (2013) A new nickel-ceria composite for direct-methane solid oxide fuel cells. Int J Hydrog Energy 38:3741–3749CrossRef
59.
Zurück zum Zitat Wang S, Lu GQ (1998) Catalytic activities and coking characteristics of oxides-supported Ni catalysts for CH4 reforming with carbon dioxide. Energy Fuel 12:248–256CrossRef Wang S, Lu GQ (1998) Catalytic activities and coking characteristics of oxides-supported Ni catalysts for CH4 reforming with carbon dioxide. Energy Fuel 12:248–256CrossRef
60.
Zurück zum Zitat Chen XJ, Khor KA, Chan SH (2005) Suppression of carbon deposition at CeO2-modified Ni/YSZ anodes in weakly humidified CH4 at 850° C. Electrochem Solid State Lett 8:A79–A82CrossRef Chen XJ, Khor KA, Chan SH (2005) Suppression of carbon deposition at CeO2-modified Ni/YSZ anodes in weakly humidified CH4 at 850° C. Electrochem Solid State Lett 8:A79–A82CrossRef
61.
Zurück zum Zitat Qiao J, Zhang N, Wang Z, Mao Y, Sun K, Yuan Y (2009) Performance of mix-impregnated CeO2–Ni/YSZ anodes for direct oxidation of methane in solid oxide fuel cells. Fuel Cells 9:729–739CrossRef Qiao J, Zhang N, Wang Z, Mao Y, Sun K, Yuan Y (2009) Performance of mix-impregnated CeO2–Ni/YSZ anodes for direct oxidation of methane in solid oxide fuel cells. Fuel Cells 9:729–739CrossRef
62.
Zurück zum Zitat Shanmugam V, Zapf R, Neuberg S, Hessel V, Kolb G (2017) Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors. Appl Catal B Environ 203:859–869CrossRef Shanmugam V, Zapf R, Neuberg S, Hessel V, Kolb G (2017) Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors. Appl Catal B Environ 203:859–869CrossRef
63.
Zurück zum Zitat Sun YF, Zhou XW, Zeng YM, Amirkhiz BS, Wang MN, Zhang LZ, Hua B, Li J, Li JH, Luo JL (2015) An ingenious Ni/Ce co-doped titanate based perovskite as a coking-tolerant anode material for direct hydrocarbon solid oxide fuel cells. J Mater Chem A 3:22830–22838CrossRef Sun YF, Zhou XW, Zeng YM, Amirkhiz BS, Wang MN, Zhang LZ, Hua B, Li J, Li JH, Luo JL (2015) An ingenious Ni/Ce co-doped titanate based perovskite as a coking-tolerant anode material for direct hydrocarbon solid oxide fuel cells. J Mater Chem A 3:22830–22838CrossRef
64.
Zurück zum Zitat Sun YF, Li JH, Chuang KT, Luo JL (2015) Electrochemical performance and carbon deposition resistance of Ce-doped La0.7Sr0.3Fe0.5Cr0.5O3−δ anode materials for solid oxide fuel cells fed with syngas. J Power Sources 274:483–487CrossRef Sun YF, Li JH, Chuang KT, Luo JL (2015) Electrochemical performance and carbon deposition resistance of Ce-doped La0.7Sr0.3Fe0.5Cr0.5O3−δ anode materials for solid oxide fuel cells fed with syngas. J Power Sources 274:483–487CrossRef
65.
Zurück zum Zitat Liu J, Barnett SA (2003) Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ion 158:11–16CrossRef Liu J, Barnett SA (2003) Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ion 158:11–16CrossRef
66.
Zurück zum Zitat Duarte RB, Nachtegaal M, Bueno JMC, Bokhoven JAV (2012) Understanding the effect of Sm2O3 and CeO2 promoters on the structure and activity of Rh/Al2O3 catalysts in methane steam reforming. J Catal 296:86–98CrossRef Duarte RB, Nachtegaal M, Bueno JMC, Bokhoven JAV (2012) Understanding the effect of Sm2O3 and CeO2 promoters on the structure and activity of Rh/Al2O3 catalysts in methane steam reforming. J Catal 296:86–98CrossRef
67.
Zurück zum Zitat Habimana F (2009) Effect of Cu promoter on Ni-based SBA-15 catalysts for partial oxidation of methane to syngas. J Energy Chem 18:392–398 Habimana F (2009) Effect of Cu promoter on Ni-based SBA-15 catalysts for partial oxidation of methane to syngas. J Energy Chem 18:392–398
68.
Zurück zum Zitat Vizcaíno AJ, Carrero A, Calles JA (2007) Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts. Int J Hydrog Energy 32:1450–1461CrossRef Vizcaíno AJ, Carrero A, Calles JA (2007) Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts. Int J Hydrog Energy 32:1450–1461CrossRef
69.
Zurück zum Zitat Zhang H, Li M, Xiao P, Liu D, Zou CJ (2013) Structure and catalytic performance of Mg-SBA-15-supported nickel catalysts for CO2 reforming of methane to syngas. Chem Eng Technol 36:1701–1707 Zhang H, Li M, Xiao P, Liu D, Zou CJ (2013) Structure and catalytic performance of Mg-SBA-15-supported nickel catalysts for CO2 reforming of methane to syngas. Chem Eng Technol 36:1701–1707
70.
Zurück zum Zitat Calles JA, Carrero A, Vizcaíno AJ, García-Moreno L (2014) Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: effect of alkaline earth promoters on activity and stability. Catal Today 227:198–206CrossRef Calles JA, Carrero A, Vizcaíno AJ, García-Moreno L (2014) Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: effect of alkaline earth promoters on activity and stability. Catal Today 227:198–206CrossRef
71.
Zurück zum Zitat Tao J, Zhao LQ, Dong CQ, Qiang L, Du XZ, Dahlquist E (2013) Catalytic steam reforming of toluene as a model compound of biomass gasification tar using Ni–CeO2/SBA-15 catalysts. Energies 6:3284–3296CrossRef Tao J, Zhao LQ, Dong CQ, Qiang L, Du XZ, Dahlquist E (2013) Catalytic steam reforming of toluene as a model compound of biomass gasification tar using Ni–CeO2/SBA-15 catalysts. Energies 6:3284–3296CrossRef
72.
Zurück zum Zitat Albarazi A, Gálvez ME, Costa PD (2015) Synthesis strategies of ceria–zirconia doped Ni/SBA-15 catalysts for methane dry reforming. Catal Commun 59:108–112CrossRef Albarazi A, Gálvez ME, Costa PD (2015) Synthesis strategies of ceria–zirconia doped Ni/SBA-15 catalysts for methane dry reforming. Catal Commun 59:108–112CrossRef
73.
Zurück zum Zitat Wang K, Li X, Ji S, Shi X, Tang JJ (2016) Effect of Ce x Zr1−xO2 promoter on Ni-based SBA-15 catalyst for steam reforming of methane. Energy Fuel 23:25–31CrossRef Wang K, Li X, Ji S, Shi X, Tang JJ (2016) Effect of Ce x Zr1−xO2 promoter on Ni-based SBA-15 catalyst for steam reforming of methane. Energy Fuel 23:25–31CrossRef
74.
Zurück zum Zitat Wang N, Wei C, Zhang T, Zhao XS (2012) Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. Int J Hydrog Energy 37:19–30CrossRef Wang N, Wei C, Zhang T, Zhao XS (2012) Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. Int J Hydrog Energy 37:19–30CrossRef
75.
Zurück zum Zitat Li D, Zeng L, Li X, Wang X, Ma H, Assabumrungrat S, Gong J (2015) Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Appl Catal B Environ s176–177:532–541CrossRef Li D, Zeng L, Li X, Wang X, Ma H, Assabumrungrat S, Gong J (2015) Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Appl Catal B Environ s176–177:532–541CrossRef
76.
Zurück zum Zitat Xie T, Zhao X, Zhang J, Shi L, Zhang D (2015) Ni nanoparticles immobilized Ce-modified mesoporous silica via a novel sublimation-deposition strategy for catalytic reforming of methane with carbon dioxide. Int J Hydrog Energy 40:9685–9695CrossRef Xie T, Zhao X, Zhang J, Shi L, Zhang D (2015) Ni nanoparticles immobilized Ce-modified mesoporous silica via a novel sublimation-deposition strategy for catalytic reforming of methane with carbon dioxide. Int J Hydrog Energy 40:9685–9695CrossRef
77.
Zurück zum Zitat Calles JA, Carrero A, Vizcaíno AJ (2009) Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming. Microporous Mesoporous Mater 119:200–207CrossRef Calles JA, Carrero A, Vizcaíno AJ (2009) Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming. Microporous Mesoporous Mater 119:200–207CrossRef
78.
Zurück zum Zitat He B (2012) Fabrication and characterization of novel anode materials for intermediate temperature solid oxide fuel cells. Ph.D. Dissertation, University of Science and Technology of China, China He B (2012) Fabrication and characterization of novel anode materials for intermediate temperature solid oxide fuel cells. Ph.D. Dissertation, University of Science and Technology of China, China
79.
Zurück zum Zitat Li M, Hua B, Luo JL, Jiang SP, Pu J, Chi B, Li J (2016) Enhancing sulfur tolerance of Ni-based cermet anodes of solid oxide fuel cells by ytterbium-doped barium cerate infiltration. ACS Appl Mater Int 8:10293–10301CrossRef Li M, Hua B, Luo JL, Jiang SP, Pu J, Chi B, Li J (2016) Enhancing sulfur tolerance of Ni-based cermet anodes of solid oxide fuel cells by ytterbium-doped barium cerate infiltration. ACS Appl Mater Int 8:10293–10301CrossRef
80.
Zurück zum Zitat Li X, Liu M, Lai SY, Ding D, Gong M, Lee JP, Blinn KS, Bu Y, Wang Z, Bottomley LA (2015) In situ probing of the mechanisms of coking resistance on catalyst-modified anodes for solid oxide fuel cells. Chem Mater 27:822–828CrossRef Li X, Liu M, Lai SY, Ding D, Gong M, Lee JP, Blinn KS, Bu Y, Wang Z, Bottomley LA (2015) In situ probing of the mechanisms of coking resistance on catalyst-modified anodes for solid oxide fuel cells. Chem Mater 27:822–828CrossRef
81.
Zurück zum Zitat Liu M, Choi YM, Yang L, Blinn K, Qin W, Liu P, Liu M (2012) Direct octane fuel cells: a promising power for transportation. Nano Energy 1:448–455CrossRef Liu M, Choi YM, Yang L, Blinn K, Qin W, Liu P, Liu M (2012) Direct octane fuel cells: a promising power for transportation. Nano Energy 1:448–455CrossRef
82.
Zurück zum Zitat Shishkin M, Ziegler T (2013) Coke-tolerant Ni/BaCe1−xY x O3−δ anodes for solid oxide fuel cells: DFT + U Study. J Phys Chem C 117:7086–7096CrossRef Shishkin M, Ziegler T (2013) Coke-tolerant Ni/BaCe1−xY x O3−δ anodes for solid oxide fuel cells: DFT + U Study. J Phys Chem C 117:7086–7096CrossRef
83.
Zurück zum Zitat Wang X, Zhang T, Kang J, Zhao L, Guo L, Feng P, Zhou F, Ling Y (2017) Numerical modeling of ceria-based SOFCs with bi-layer electrolyte free from internal short circuit: comparison of two cell configurations. Electrochim Acta 248:356–367CrossRef Wang X, Zhang T, Kang J, Zhao L, Guo L, Feng P, Zhou F, Ling Y (2017) Numerical modeling of ceria-based SOFCs with bi-layer electrolyte free from internal short circuit: comparison of two cell configurations. Electrochim Acta 248:356–367CrossRef
84.
Zurück zum Zitat Ling Y, Chen J, Wang Z, Xia C, Peng R, Lu Y (2013) New ionic diffusion strategy to fabricate proton conducting solid oxide fuel cells based on a stable La2Ce2O7 electrolyte. Int J of Hydrog Energy 38:7430–7437CrossRef Ling Y, Chen J, Wang Z, Xia C, Peng R, Lu Y (2013) New ionic diffusion strategy to fabricate proton conducting solid oxide fuel cells based on a stable La2Ce2O7 electrolyte. Int J of Hydrog Energy 38:7430–7437CrossRef
85.
Zurück zum Zitat Wang X, Wei K, Kang J, Shen S, Budiman RA, Ou X, Zhou F, Ling Y (2018) Experimental and numerical studies of a bifunctional proton conducting anode of ceria-based SOFCs free from internal shorting and carbon deposition. Electrochim Acta 264:109–118CrossRef Wang X, Wei K, Kang J, Shen S, Budiman RA, Ou X, Zhou F, Ling Y (2018) Experimental and numerical studies of a bifunctional proton conducting anode of ceria-based SOFCs free from internal shorting and carbon deposition. Electrochim Acta 264:109–118CrossRef
86.
Zurück zum Zitat Ma J, Jiang C, Connor PA, Cassidy M, Irvine JTS (2015) Highly efficient, coking-resistant SOFCs for energy conversion using biogas fuels. J Mater Chem A 3:19068–19076CrossRef Ma J, Jiang C, Connor PA, Cassidy M, Irvine JTS (2015) Highly efficient, coking-resistant SOFCs for energy conversion using biogas fuels. J Mater Chem A 3:19068–19076CrossRef
87.
Zurück zum Zitat Konwar D, Nguyen NTQ, Yoon HH (2015) Evaluation of BaZr0.1Ce0.7Y0.2O3−delta electrolyte prepared by carbonate precipitation for a mixed ion-conducting SOFC. Int J Hydrog Energy 40:11651–11658CrossRef Konwar D, Nguyen NTQ, Yoon HH (2015) Evaluation of BaZr0.1Ce0.7Y0.2O3−delta electrolyte prepared by carbonate precipitation for a mixed ion-conducting SOFC. Int J Hydrog Energy 40:11651–11658CrossRef
88.
Zurück zum Zitat Gong Z, Sun WP, Shan D, Wu YS, Liu W (2016) Tuning the thickness of Ba-containing “Functional” layer toward high-performance ceria-based solid oxide fuel cells. ACS Appl Mater Int 8:10835–10840CrossRef Gong Z, Sun WP, Shan D, Wu YS, Liu W (2016) Tuning the thickness of Ba-containing “Functional” layer toward high-performance ceria-based solid oxide fuel cells. ACS Appl Mater Int 8:10835–10840CrossRef
89.
Zurück zum Zitat Wang W, Chen Y, Wang F, Tade MO, Shao Z (2015) Enhanced electrochemical performance, water storage capability and coking resistance of a Ni + BaZr0.1Ce0.7Y0.1Yb0.1O3−δ anode for solid oxide fuel cells operating on ethanol. Chem Eng Sci 126:22–31CrossRef Wang W, Chen Y, Wang F, Tade MO, Shao Z (2015) Enhanced electrochemical performance, water storage capability and coking resistance of a Ni + BaZr0.1Ce0.7Y0.1Yb0.1O3−δ anode for solid oxide fuel cells operating on ethanol. Chem Eng Sci 126:22–31CrossRef
90.
Zurück zum Zitat Bradford MCJ, Vannice MA (1996) Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics. Appl Catal A Gen 142:97–122CrossRef Bradford MCJ, Vannice MA (1996) Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics. Appl Catal A Gen 142:97–122CrossRef
91.
Zurück zum Zitat Wu T, Yan Q, Wan H (2005) Partial oxidation of methane to hydrogen and carbon monoxide over a Ni/TiO 2 catalyst. J Mol Catal A Chem 226:41–48CrossRef Wu T, Yan Q, Wan H (2005) Partial oxidation of methane to hydrogen and carbon monoxide over a Ni/TiO 2 catalyst. J Mol Catal A Chem 226:41–48CrossRef
92.
Zurück zum Zitat Wang ZQ, Wang ZB, Yang WQ, Peng RR, Lu YL (2014) Carbon-tolerant solid oxide fuel cells using NiTiO3 as an anode internal reforming layer. J Power Sources 255:404–409CrossRef Wang ZQ, Wang ZB, Yang WQ, Peng RR, Lu YL (2014) Carbon-tolerant solid oxide fuel cells using NiTiO3 as an anode internal reforming layer. J Power Sources 255:404–409CrossRef
93.
Zurück zum Zitat Tietz F, Dias FJ, Dubiel B, Penkalla HJ (1999) Manufacturing of NiO/NiTiO3 porous substrates and the role of zirconia impurities during sintering. Mater Sci Eng B 68:35–41CrossRef Tietz F, Dias FJ, Dubiel B, Penkalla HJ (1999) Manufacturing of NiO/NiTiO3 porous substrates and the role of zirconia impurities during sintering. Mater Sci Eng B 68:35–41CrossRef
95.
Zurück zum Zitat Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Perez M (2007) Activity of CeO x and TiO x nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318:1757–1760CrossRef Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Perez M (2007) Activity of CeO x and TiO x nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318:1757–1760CrossRef
96.
Zurück zum Zitat Cai W, Fu X, Guo T, Chen H, Zhao L, Ou X, Feng P, Ling Y (2017) An active anode functional layer for intermediate temperature solid oxide fuel cells with carbon-tolerant anode. Mater Lett 208:54–57CrossRef Cai W, Fu X, Guo T, Chen H, Zhao L, Ou X, Feng P, Ling Y (2017) An active anode functional layer for intermediate temperature solid oxide fuel cells with carbon-tolerant anode. Mater Lett 208:54–57CrossRef
97.
Zurück zum Zitat Schaub R, Thostrup P, Lopez N, Laegsgaard E, Stensgaard I, Norskov JK, Besenbacher F (2001) Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). Phys Rev Lett 87(266104):1–4 Schaub R, Thostrup P, Lopez N, Laegsgaard E, Stensgaard I, Norskov JK, Besenbacher F (2001) Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). Phys Rev Lett 87(266104):1–4
98.
Zurück zum Zitat Lindan PJD, Zhang CJ (2005) Comment on “molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2 (110)”. Phys Rev Lett 95:029601CrossRef Lindan PJD, Zhang CJ (2005) Comment on “molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2 (110)”. Phys Rev Lett 95:029601CrossRef
99.
Zurück zum Zitat Harris LA, Quong AA (2004) Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2(110). Phys Rev Lett 93(086105):1–4 Harris LA, Quong AA (2004) Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2(110). Phys Rev Lett 93(086105):1–4
100.
Zurück zum Zitat Duncan DA, Allegretti F, Woodruff DP (2012) Water does partially dissociate on the perfect TiO2(110) surface: a quantitative structure determination. Phys Rev B 86:3573–3576CrossRef Duncan DA, Allegretti F, Woodruff DP (2012) Water does partially dissociate on the perfect TiO2(110) surface: a quantitative structure determination. Phys Rev B 86:3573–3576CrossRef
101.
Zurück zum Zitat Jin C, Yang C, Zhao F, Coffin A, Chen F (2010) Direct-methane solid oxide fuel cells with Cu1.3Mn1.7O4 spinel internal reforming layer. Electrochem Commun 12:1450–1452CrossRef Jin C, Yang C, Zhao F, Coffin A, Chen F (2010) Direct-methane solid oxide fuel cells with Cu1.3Mn1.7O4 spinel internal reforming layer. Electrochem Commun 12:1450–1452CrossRef
102.
Zurück zum Zitat Aschauer U, He Y, Cheng H, Li SC, Diebold U, Selloni A (2011) Influence of subsurface defects on the surface reactivity of TiO2: water on anatase (101). J Phys Chem C 114:1278–1284CrossRef Aschauer U, He Y, Cheng H, Li SC, Diebold U, Selloni A (2011) Influence of subsurface defects on the surface reactivity of TiO2: water on anatase (101). J Phys Chem C 114:1278–1284CrossRef
103.
Zurück zum Zitat Shinde VM, Madras G (2014) Catalytic performance of highly dispersed Ni/TiO2 for dry and steam reforming of methane. RSC Adv 4:4817–4826CrossRef Shinde VM, Madras G (2014) Catalytic performance of highly dispersed Ni/TiO2 for dry and steam reforming of methane. RSC Adv 4:4817–4826CrossRef
104.
Zurück zum Zitat Hua B, Li M, Sun YF, Zhang YQ, Yan N, Li J, Estell T, Sarkar P, Luo JL (2017) Grafting doped manganite into nickel anode enables efficient and durable energy conversions in biogas solid oxide fuel cells. Appl Catal B Environ 200:174–181CrossRef Hua B, Li M, Sun YF, Zhang YQ, Yan N, Li J, Estell T, Sarkar P, Luo JL (2017) Grafting doped manganite into nickel anode enables efficient and durable energy conversions in biogas solid oxide fuel cells. Appl Catal B Environ 200:174–181CrossRef
105.
Zurück zum Zitat Qu J, Wang W, Chen Y, Deng X, Shao Z (2016) Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures. Appl Energy 164:563–571CrossRef Qu J, Wang W, Chen Y, Deng X, Shao Z (2016) Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures. Appl Energy 164:563–571CrossRef
106.
Zurück zum Zitat Wang F, Wang W, Ran R, Tade MO, Shao Z (2014) Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas. J Power Sources 268:787–793CrossRef Wang F, Wang W, Ran R, Tade MO, Shao Z (2014) Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas. J Power Sources 268:787–793CrossRef
107.
Zurück zum Zitat Kan H, Lee H (2010) Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC. Appl Catal B Environ 97:108–114CrossRef Kan H, Lee H (2010) Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC. Appl Catal B Environ 97:108–114CrossRef
108.
Zurück zum Zitat Hua B, Yan N, Li M, Zhang YQ, Sun YF, Li J, Etsell T, Sarkar P, Chuang K, Luo JL (2016) Novel layered solid oxide fuel cells with multiple-twinned Ni0.8Co0.2 nanoparticles: the key to thermally independent CO2 utilization and power-chemical cogeneration. Energy Environ Sci 9:207–215CrossRef Hua B, Yan N, Li M, Zhang YQ, Sun YF, Li J, Etsell T, Sarkar P, Chuang K, Luo JL (2016) Novel layered solid oxide fuel cells with multiple-twinned Ni0.8Co0.2 nanoparticles: the key to thermally independent CO2 utilization and power-chemical cogeneration. Energy Environ Sci 9:207–215CrossRef
109.
Zurück zum Zitat Rismanchian A, Mirzababaei J, Chuang SSC (2015) Electroless plated Cu–Ni anode catalyst for natural gas solid oxide fuel cells. Catal Today 245:79–85CrossRef Rismanchian A, Mirzababaei J, Chuang SSC (2015) Electroless plated Cu–Ni anode catalyst for natural gas solid oxide fuel cells. Catal Today 245:79–85CrossRef
110.
Zurück zum Zitat Li K, Jia L, Wang X, Pu J, Chi B, Li J (2015) Methane on-cell reforming in nickel–iron alloy supported solid oxide fuel cells. J Power Sources 284:446–451CrossRef Li K, Jia L, Wang X, Pu J, Chi B, Li J (2015) Methane on-cell reforming in nickel–iron alloy supported solid oxide fuel cells. J Power Sources 284:446–451CrossRef
111.
Zurück zum Zitat Niu B, Jin F, Yang X, Feng T, He T (2018) Resisting coking and sulfur poisoning of double perovskite Sr2TiFe0.5Mo0.5O6−δ anode material for solid oxide fuel cells. Int J Hydrog Energy 43:3280–3290CrossRef Niu B, Jin F, Yang X, Feng T, He T (2018) Resisting coking and sulfur poisoning of double perovskite Sr2TiFe0.5Mo0.5O6−δ anode material for solid oxide fuel cells. Int J Hydrog Energy 43:3280–3290CrossRef
112.
Zurück zum Zitat Niu B, Jin F, Zhang L, Shen P, He T (2018) Performance of double perovskite symmetrical electrode materials Sr2TiFe1−xMo x O6−δ(x = 0.1, 0.2) for solid oxide fuel cells. Electrochim Acta 263:217–227CrossRef Niu B, Jin F, Zhang L, Shen P, He T (2018) Performance of double perovskite symmetrical electrode materials Sr2TiFe1−xMo x O6−δ(x = 0.1, 0.2) for solid oxide fuel cells. Electrochim Acta 263:217–227CrossRef
113.
Zurück zum Zitat Lee bS, Parka EK, Yun JW (2018) Characteristics of Sr0.92Y0.08Ti1−yNiyO3−δ anode and Ni-infiltrated Sr0.92Y0.08TiO3−δ anode using CH4 fuel in solid oxide fuel cells. Appl Surf Sci 429:171–179CrossRef Lee bS, Parka EK, Yun JW (2018) Characteristics of Sr0.92Y0.08Ti1−yNiyO3−δ anode and Ni-infiltrated Sr0.92Y0.08TiO3−δ anode using CH4 fuel in solid oxide fuel cells. Appl Surf Sci 429:171–179CrossRef
114.
Zurück zum Zitat Zhao K, Hou X, Bkour Q, Norton MG, Ha S (2018) Ni Mo-ceria-zirconia catalytic reforming layer for solid oxide fuel cells running on a gasoline surrogate. Appl Catal B Environ 224:500–507CrossRef Zhao K, Hou X, Bkour Q, Norton MG, Ha S (2018) Ni Mo-ceria-zirconia catalytic reforming layer for solid oxide fuel cells running on a gasoline surrogate. Appl Catal B Environ 224:500–507CrossRef
115.
Zurück zum Zitat Yang X, Panthi D, Hedayat N, He T, Chen F, Guan W, Du Y (2018) Molybdenum dioxide as an alternative catalyst for direct utilization of methane in tubular solid oxide fuel cells. Electrochem Commun 86:126–129CrossRef Yang X, Panthi D, Hedayat N, He T, Chen F, Guan W, Du Y (2018) Molybdenum dioxide as an alternative catalyst for direct utilization of methane in tubular solid oxide fuel cells. Electrochem Commun 86:126–129CrossRef
116.
Zurück zum Zitat Gorte RJ, Park SD, Vohs JM, Wang C (2000) Anodes for direct oxidation of dry hydrocarbons in a solid oxide fuel cell. Adv Mater 12:1465–1469CrossRef Gorte RJ, Park SD, Vohs JM, Wang C (2000) Anodes for direct oxidation of dry hydrocarbons in a solid oxide fuel cell. Adv Mater 12:1465–1469CrossRef
117.
Zurück zum Zitat Lei Z, Zhu QS, Han MF (2010) Fabrication and performance of direct- Methane SOFC with a Cu–CeO2 based anode. Acta Phys Chim Sin 26:583–588 Lei Z, Zhu QS, Han MF (2010) Fabrication and performance of direct- Methane SOFC with a Cu–CeO2 based anode. Acta Phys Chim Sin 26:583–588
118.
Zurück zum Zitat Gorte RJ, Kim H, Vohs JM (2002) Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon. J Power Sources 106:10–15CrossRef Gorte RJ, Kim H, Vohs JM (2002) Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon. J Power Sources 106:10–15CrossRef
119.
Zurück zum Zitat Cimenti M, Hill JM (2009) Direct utilization of ethanol on ceria-based anodes for solid oxide fuel cells. Asia Pac J Chem Eng 4:45–54CrossRef Cimenti M, Hill JM (2009) Direct utilization of ethanol on ceria-based anodes for solid oxide fuel cells. Asia Pac J Chem Eng 4:45–54CrossRef
120.
Zurück zum Zitat Kaur G, Basu S (2015) Physical characterization and electrochemical performance of copper-iron-ceria-YSZ anode-based SOFCs in H2 and methane fuels. IntJ Energy Res 39:1345–1354CrossRef Kaur G, Basu S (2015) Physical characterization and electrochemical performance of copper-iron-ceria-YSZ anode-based SOFCs in H2 and methane fuels. IntJ Energy Res 39:1345–1354CrossRef
121.
Zurück zum Zitat Lee SI, Ahn K, Vohs JM, Gorte RJ (2005) Cu–Co bimetallic anodes for direct utilization of methane in SOFCs. Electrochem Solid State Lett 8:A48–A51CrossRef Lee SI, Ahn K, Vohs JM, Gorte RJ (2005) Cu–Co bimetallic anodes for direct utilization of methane in SOFCs. Electrochem Solid State Lett 8:A48–A51CrossRef
122.
Zurück zum Zitat Zhan Z, Barnett SA (2005) An octane-fueled solid oxide fuel cell. Science 308:844–847CrossRef Zhan Z, Barnett SA (2005) An octane-fueled solid oxide fuel cell. Science 308:844–847CrossRef
123.
Zurück zum Zitat Liu X, Zhan Z, Meng X, Huang W, Wang S, Wen T (2012) Enabling catalysis of Ru–CeO2 for propane oxidation in low temperature solid oxide fuel cells. J Power Sources 199:138–141CrossRef Liu X, Zhan Z, Meng X, Huang W, Wang S, Wen T (2012) Enabling catalysis of Ru–CeO2 for propane oxidation in low temperature solid oxide fuel cells. J Power Sources 199:138–141CrossRef
124.
Zurück zum Zitat Liu J, Madsen BD, Ji Z, Barnett SA (2002) A fuel-flexible ceramic-based anode for solid oxide fuel cells. Electrochem Solid State Lett 5:A122–A124CrossRef Liu J, Madsen BD, Ji Z, Barnett SA (2002) A fuel-flexible ceramic-based anode for solid oxide fuel cells. Electrochem Solid State Lett 5:A122–A124CrossRef
125.
Zurück zum Zitat Tao S, Irvine JTS (2004) Synthesis and characterization of (La0.75Sr 0.25)Cr0.5Mn0.5O3−δ, a redox-stable, efficient perovskite anode for SOFCs. J Electrochem Soc 151:A252–A259CrossRef Tao S, Irvine JTS (2004) Synthesis and characterization of (La0.75Sr 0.25)Cr0.5Mn0.5O3−δ, a redox-stable, efficient perovskite anode for SOFCs. J Electrochem Soc 151:A252–A259CrossRef
126.
Zurück zum Zitat Vernoux P, Guillodo M, Fouletier J, Hammou A (2000) Alternative anode material for gradual methane reforming in solid oxide fuel cells. Solid State Ion 135:425–431CrossRef Vernoux P, Guillodo M, Fouletier J, Hammou A (2000) Alternative anode material for gradual methane reforming in solid oxide fuel cells. Solid State Ion 135:425–431CrossRef
127.
Zurück zum Zitat Yang C, Yang Z, Jin C, Xiao G, Chen F, Han M (2012) Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv Mater 24:1439–1443CrossRef Yang C, Yang Z, Jin C, Xiao G, Chen F, Han M (2012) Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv Mater 24:1439–1443CrossRef
128.
Zurück zum Zitat Sengodan S, Choi S, Jun A, Shin TH, Ju YW, Jeong HY, Shin J, Irvine JT, Kim G (2015) Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat Mater 14:205–209CrossRef Sengodan S, Choi S, Jun A, Shin TH, Ju YW, Jeong HY, Shin J, Irvine JT, Kim G (2015) Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat Mater 14:205–209CrossRef
129.
Zurück zum Zitat Huang YH, Dass RI, Xing ZL, Goodenough JB (2006) Double perovskites as anode materials for solid oxide fuel cells. Science 312:254–257CrossRef Huang YH, Dass RI, Xing ZL, Goodenough JB (2006) Double perovskites as anode materials for solid oxide fuel cells. Science 312:254–257CrossRef
130.
Zurück zum Zitat Ding H, Tao Z, Liu S, Yang Y (2016) A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6−δ double perovskite as anode material. J Power Sources 327:573–579CrossRef Ding H, Tao Z, Liu S, Yang Y (2016) A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6−δ double perovskite as anode material. J Power Sources 327:573–579CrossRef
131.
Zurück zum Zitat LiM Hua B, Jiang SP, Pu J, Chi B, Jian L (2014) BaZr 0.1 Ce0.7Y0.1Yb0.1O3−δ as highly active and carbon tolerant anode for direct hydrocarbon solid oxide fuel cells. Int J Hydrog Energy 39:15975–15981CrossRef LiM Hua B, Jiang SP, Pu J, Chi B, Jian L (2014) BaZr 0.1 Ce0.7Y0.1Yb0.1O3−δ as highly active and carbon tolerant anode for direct hydrocarbon solid oxide fuel cells. Int J Hydrog Energy 39:15975–15981CrossRef
133.
Zurück zum Zitat Yoon D, Manthiram A (2014) Hydrocarbon-fueled solid oxide fuel cells with surface-modified, hydroxylated Sn/Ni–Ce0.8Gd0.2O1.9 heterogeneous catalyst anode. J Mater Chem A 2:17041–17046CrossRef Yoon D, Manthiram A (2014) Hydrocarbon-fueled solid oxide fuel cells with surface-modified, hydroxylated Sn/Ni–Ce0.8Gd0.2O1.9 heterogeneous catalyst anode. J Mater Chem A 2:17041–17046CrossRef
134.
Zurück zum Zitat Bogolowski N, Iwanschitz B, Drillet JF (2015) Development of a coking-resistant NiSn anode for the direct methane SOFC. Fuel Cells 15:711–717CrossRef Bogolowski N, Iwanschitz B, Drillet JF (2015) Development of a coking-resistant NiSn anode for the direct methane SOFC. Fuel Cells 15:711–717CrossRef
135.
Zurück zum Zitat Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) Cu–Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:2768–2772 Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) Cu–Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:2768–2772
136.
Zurück zum Zitat Islam S, Hill JM (2011) Preparation of Cu–Ni/YSZ solid oxide fuel cell anodes using microwave irradiation. J Power Sources 196:5091–5094CrossRef Islam S, Hill JM (2011) Preparation of Cu–Ni/YSZ solid oxide fuel cell anodes using microwave irradiation. J Power Sources 196:5091–5094CrossRef
137.
Zurück zum Zitat Faro LF, Reis RM, Saglietti GGA, Sato AG, Ticianelli EA, Zignani SC, Arico AS (2014) Nickel–copper/gadolinium-doped ceria (CGO) composite electrocatalyst as a protective layer for a solid-oxide fuel cell anode fed with ethanol. Chem Electrochem 1:1395–1402 Faro LF, Reis RM, Saglietti GGA, Sato AG, Ticianelli EA, Zignani SC, Arico AS (2014) Nickel–copper/gadolinium-doped ceria (CGO) composite electrocatalyst as a protective layer for a solid-oxide fuel cell anode fed with ethanol. Chem Electrochem 1:1395–1402
138.
Zurück zum Zitat Wang W, Zhu H, Yang G, Park HJ, Jung DW, Kwak C, Shao Z (2014) A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells. J Power Sources 258:134–141CrossRef Wang W, Zhu H, Yang G, Park HJ, Jung DW, Kwak C, Shao Z (2014) A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells. J Power Sources 258:134–141CrossRef
139.
Zurück zum Zitat Kan H, Lee H (2011) Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel. Catal Commun 12:36–39CrossRef Kan H, Lee H (2011) Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel. Catal Commun 12:36–39CrossRef
140.
Zurück zum Zitat Ding G, Gan T, Yu J (2017) Carbon-resistant Ni1−xCo x -Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol. Catal Today 298:250–257CrossRef Ding G, Gan T, Yu J (2017) Carbon-resistant Ni1−xCo x -Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol. Catal Today 298:250–257CrossRef
141.
Zurück zum Zitat Fan MS, Abdullah AZ, Bhatia S (2010) Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2: preparation, characterization and activity studies. Appl Catal B Environ 100:365–377CrossRef Fan MS, Abdullah AZ, Bhatia S (2010) Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2: preparation, characterization and activity studies. Appl Catal B Environ 100:365–377CrossRef
142.
Zurück zum Zitat Zhang J, Wang H, Dalai A (2007) Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J Catal 249:300–310CrossRef Zhang J, Wang H, Dalai A (2007) Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J Catal 249:300–310CrossRef
143.
Zurück zum Zitat Gavrielatos I, Drakopoulos V, Neophytides S (2008) Carbon tolerant Ni–Au SOFC electrodes operating under internal steam reforming conditions. J Catal 259:75–84CrossRef Gavrielatos I, Drakopoulos V, Neophytides S (2008) Carbon tolerant Ni–Au SOFC electrodes operating under internal steam reforming conditions. J Catal 259:75–84CrossRef
144.
Zurück zum Zitat Nabae Y, Yamanaka I (2009) Alloying effects of Pd and Ni on the catalysis of the oxidation of dry CH4 in solid oxide fuel cells. Appl Catal A Gen 369:119–124CrossRef Nabae Y, Yamanaka I (2009) Alloying effects of Pd and Ni on the catalysis of the oxidation of dry CH4 in solid oxide fuel cells. Appl Catal A Gen 369:119–124CrossRef
145.
Zurück zum Zitat Yamanaka I, Ito T, Nabae Y, Hatano M (2007) Effect of steam on direct oxidation of methane over Pd-Ni electrocatalyst supported on lanthanum chromite anode. ECS Trans 7:1745–1751CrossRef Yamanaka I, Ito T, Nabae Y, Hatano M (2007) Effect of steam on direct oxidation of methane over Pd-Ni electrocatalyst supported on lanthanum chromite anode. ECS Trans 7:1745–1751CrossRef
146.
Zurück zum Zitat Nabae Y, Yamanaka I, Hatano M, Otsuka K (2006) Catalytic behavior of Pd–Ni/composite anode for direct oxidation of methane in SOFCs. J Electrochem Soc 153:A140–A145CrossRef Nabae Y, Yamanaka I, Hatano M, Otsuka K (2006) Catalytic behavior of Pd–Ni/composite anode for direct oxidation of methane in SOFCs. J Electrochem Soc 153:A140–A145CrossRef
147.
Zurück zum Zitat Basile F, Fornasari G, Trifirò F, Vaccari A (2002) Rh–Ni synergy in the catalytic partial oxidation of methane: surface phenomena and catalyst stability. Catal Today 77:215–223CrossRef Basile F, Fornasari G, Trifirò F, Vaccari A (2002) Rh–Ni synergy in the catalytic partial oxidation of methane: surface phenomena and catalyst stability. Catal Today 77:215–223CrossRef
148.
Zurück zum Zitat Özkara-Aydınoğlu Ş, Aksoylu AE (2011) CO2 reforming of methane over Pt–Ni/Al2O3 catalysts: effects of catalyst composition, and water and oxygen addition to the feed. Int J Hydrog Energy 36:2950–2959CrossRef Özkara-Aydınoğlu Ş, Aksoylu AE (2011) CO2 reforming of methane over Pt–Ni/Al2O3 catalysts: effects of catalyst composition, and water and oxygen addition to the feed. Int J Hydrog Energy 36:2950–2959CrossRef
149.
Zurück zum Zitat García-Diéguez M, Pieta IS, Herrera MC, Larrubia MA, Alemany LJ (2010) Improved Pt–Ni nanocatalysts for dry reforming of methane. Appl Catal A Gen 377:191–199CrossRef García-Diéguez M, Pieta IS, Herrera MC, Larrubia MA, Alemany LJ (2010) Improved Pt–Ni nanocatalysts for dry reforming of methane. Appl Catal A Gen 377:191–199CrossRef
150.
Zurück zum Zitat Hibino T, Hashimoto A, Yano M, Suzuki M, Sano M (2003) Ru-catalyzed anode materials for direct hydrocarbon SOFCs. Electrochim Acta 48:2531–2537CrossRef Hibino T, Hashimoto A, Yano M, Suzuki M, Sano M (2003) Ru-catalyzed anode materials for direct hydrocarbon SOFCs. Electrochim Acta 48:2531–2537CrossRef
151.
Zurück zum Zitat Meng X, Gong X, Yang N, Yin Y, Tan X, Ma ZF (2014) Carbon-resistant Ni–YSZ/Cu–CeO2–YSZ dual-layer hollow fiber anode for micro tubular solid oxide fuel cell. Int J Hydrog Energy 39:3879–3886CrossRef Meng X, Gong X, Yang N, Yin Y, Tan X, Ma ZF (2014) Carbon-resistant Ni–YSZ/Cu–CeO2–YSZ dual-layer hollow fiber anode for micro tubular solid oxide fuel cell. Int J Hydrog Energy 39:3879–3886CrossRef
152.
Zurück zum Zitat Patel S, Jawlik PF, Wang L, Jackson GS, Almansoori A (2012) Impact of cofiring ceria in Ni/YSZ SOFC anodes for operation with syngas and n-Butane. J Fuel Cell Sci Tech 9:235–246CrossRef Patel S, Jawlik PF, Wang L, Jackson GS, Almansoori A (2012) Impact of cofiring ceria in Ni/YSZ SOFC anodes for operation with syngas and n-Butane. J Fuel Cell Sci Tech 9:235–246CrossRef
153.
Zurück zum Zitat Liao M, Wang W, Ran R, Shao Z (2011) Development of a Ni–Ce0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming. J Power Sources 196:6177–6185CrossRef Liao M, Wang W, Ran R, Shao Z (2011) Development of a Ni–Ce0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming. J Power Sources 196:6177–6185CrossRef
154.
Zurück zum Zitat Lee D, Myung J, Tan J, Hyun S, Irvine JTS, Kim J, Moon J (2017) Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes. J Power Sources 345:30–40CrossRef Lee D, Myung J, Tan J, Hyun S, Irvine JTS, Kim J, Moon J (2017) Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes. J Power Sources 345:30–40CrossRef
155.
Zurück zum Zitat Cheng L, Luo LH, Shi JJ, Sun LL, Xu X, Wu YF, Hu JX (2017) Ni/YSZ anode impregnated La2O3 on anti-carbon deposition of SOFC cell. J Inorg Mater 32:241–246CrossRef Cheng L, Luo LH, Shi JJ, Sun LL, Xu X, Wu YF, Hu JX (2017) Ni/YSZ anode impregnated La2O3 on anti-carbon deposition of SOFC cell. J Inorg Mater 32:241–246CrossRef
156.
Zurück zum Zitat Yan A, Phongaksorn M, Nativel D, Croiset E (2012) Lanthanum promoted NiO–SDC anode for low temperature solid oxide fuel cells fueled with methane. J Power Sources 210:374–380CrossRef Yan A, Phongaksorn M, Nativel D, Croiset E (2012) Lanthanum promoted NiO–SDC anode for low temperature solid oxide fuel cells fueled with methane. J Power Sources 210:374–380CrossRef
157.
Zurück zum Zitat Han B, Zhao K, Hou X, Kim DJ, Kim BH, Ha S, Norton MG, Xu Q, Ahn BG (2017) Ni-(Ce0.8−xTi x )Sm0.2O2−δ anode for low temperature solid oxide fuel cells running on dry methane fuel. J Power Sources 338:1–8CrossRef Han B, Zhao K, Hou X, Kim DJ, Kim BH, Ha S, Norton MG, Xu Q, Ahn BG (2017) Ni-(Ce0.8−xTi x )Sm0.2O2−δ anode for low temperature solid oxide fuel cells running on dry methane fuel. J Power Sources 338:1–8CrossRef
158.
Zurück zum Zitat Amin MH, Mantri K, Newnham J, Tardio J, Bhargava SK (2012) Highly stable ytterbium promoted Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane. Appl Catal B Environ 119–120:217–226CrossRef Amin MH, Mantri K, Newnham J, Tardio J, Bhargava SK (2012) Highly stable ytterbium promoted Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane. Appl Catal B Environ 119–120:217–226CrossRef
159.
Zurück zum Zitat Rosa DL, Sin A, Faro ML, Monforte G, Antonucci V, Aricò AS (2009) Mitigation of carbon deposits formation in intermediate temperature solid oxide fuel cells fed with dry methane by anode doping with barium. J Power Sources 193:160–164CrossRef Rosa DL, Sin A, Faro ML, Monforte G, Antonucci V, Aricò AS (2009) Mitigation of carbon deposits formation in intermediate temperature solid oxide fuel cells fed with dry methane by anode doping with barium. J Power Sources 193:160–164CrossRef
160.
Zurück zum Zitat Wan T, Zhu A, Guo Y, Wang C, Huang S, Chen H, Yang G, Wang W, Shao Z (2017) Co-generation of electricity and syngas on proton-conducting solid oxide fuel cell with a perovskite layer as a precursor of a highly efficient reforming catalyst. J Power Sources 348:9–15CrossRef Wan T, Zhu A, Guo Y, Wang C, Huang S, Chen H, Yang G, Wang W, Shao Z (2017) Co-generation of electricity and syngas on proton-conducting solid oxide fuel cell with a perovskite layer as a precursor of a highly efficient reforming catalyst. J Power Sources 348:9–15CrossRef
161.
Zurück zum Zitat Huang B, Zhu X, Hu W, Wang Y, Yu Q (2010) Characterization of the Ni-ScSZ anode with a LSCM–CeO2 catalyst layer in thin film solid oxide fuel cell running on ethanol fuel. J Power Sources 195:3053–3059CrossRef Huang B, Zhu X, Hu W, Wang Y, Yu Q (2010) Characterization of the Ni-ScSZ anode with a LSCM–CeO2 catalyst layer in thin film solid oxide fuel cell running on ethanol fuel. J Power Sources 195:3053–3059CrossRef
162.
Zurück zum Zitat Hua B, Yan N, Li M, Sun YF, Zhang YQ, Li J, Etsell T, Sarkar P, Luo JL (2016) Anode-engineered protonic ceramic fuel cell with excellent performance and fuel compatibility. Adv Mater 28:8922–8926CrossRef Hua B, Yan N, Li M, Sun YF, Zhang YQ, Li J, Etsell T, Sarkar P, Luo JL (2016) Anode-engineered protonic ceramic fuel cell with excellent performance and fuel compatibility. Adv Mater 28:8922–8926CrossRef
163.
Zurück zum Zitat Zhu X, Zhe L, Wei B, Zhang Y, Huang X, Su W (2010) Impregnated La0.75Sr0.25Cr0.5Fe0.5O3−δ-based anodes operating on H2, CH4, and C2H5OH fuels. Electrochem Solid State Lett 13:B91–B94CrossRef Zhu X, Zhe L, Wei B, Zhang Y, Huang X, Su W (2010) Impregnated La0.75Sr0.25Cr0.5Fe0.5O3−δ-based anodes operating on H2, CH4, and C2H5OH fuels. Electrochem Solid State Lett 13:B91–B94CrossRef
164.
Zurück zum Zitat Wang W, Ran R, Shao Z (2011) Lithium and lanthanum promoted Ni–Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane. J Power Sources 196:90–97CrossRef Wang W, Ran R, Shao Z (2011) Lithium and lanthanum promoted Ni–Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane. J Power Sources 196:90–97CrossRef
165.
Zurück zum Zitat Juan-Juan J, Román-Martínez MC, Illán-Gómez MJ (2006) Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane. Appl Catal A Gen 301:9–15CrossRef Juan-Juan J, Román-Martínez MC, Illán-Gómez MJ (2006) Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane. Appl Catal A Gen 301:9–15CrossRef
166.
Zurück zum Zitat Chang JS, Park SE, Yoo JW, Park JN (2000) Catalytic behavior of supported KNiCa catalyst and mechanistic consideration for carbon dioxide reforming of methane. J Catal 195:1–11CrossRef Chang JS, Park SE, Yoo JW, Park JN (2000) Catalytic behavior of supported KNiCa catalyst and mechanistic consideration for carbon dioxide reforming of methane. J Catal 195:1–11CrossRef
167.
Zurück zum Zitat Chang JS, Park SE, Chon H (1996) Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts. Appl Catal A Gen 145:111–124CrossRef Chang JS, Park SE, Chon H (1996) Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts. Appl Catal A Gen 145:111–124CrossRef
168.
Zurück zum Zitat Yang Q, Chai F, Ma C, Sun C, Shi S, Chen L (2016) Enhanced coking tolerance of a MgO-modified Ni cermet anode for hydrocarbon fueled solid oxide fuel cells. J Mater Chem A 4:18031–18036CrossRef Yang Q, Chai F, Ma C, Sun C, Shi S, Chen L (2016) Enhanced coking tolerance of a MgO-modified Ni cermet anode for hydrocarbon fueled solid oxide fuel cells. J Mater Chem A 4:18031–18036CrossRef
169.
Zurück zum Zitat Phongaksorn M, Yan A, Ismail M, Ideris A, Croiset E, Corbin S, Yoo Y (2011) Investigation of MgO promoted NiO:SDC anode material for intermediate temperature solid oxide fuel cells. ECS Trans 35:1683–1688CrossRef Phongaksorn M, Yan A, Ismail M, Ideris A, Croiset E, Corbin S, Yoo Y (2011) Investigation of MgO promoted NiO:SDC anode material for intermediate temperature solid oxide fuel cells. ECS Trans 35:1683–1688CrossRef
170.
Zurück zum Zitat Wang W, Zhou W, Ran R, Cai R, Shao Z (2009) Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer. Electrochem Commun 11:194–197CrossRef Wang W, Zhou W, Ran R, Cai R, Shao Z (2009) Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer. Electrochem Commun 11:194–197CrossRef
171.
Zurück zum Zitat Wang W, Su C, Ran R, Shao Z (2011) A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell. J Power Sources 196:3855–3862CrossRef Wang W, Su C, Ran R, Shao Z (2011) A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell. J Power Sources 196:3855–3862CrossRef
172.
Zurück zum Zitat Seok SH, Choi SH, Park ED, Han SH, Lee JS (2002) Mn-promoted Ni/Al2O3 catalysts for stable carbon dioxide reforming of methane. J Catal 209:6–15CrossRef Seok SH, Choi SH, Park ED, Han SH, Lee JS (2002) Mn-promoted Ni/Al2O3 catalysts for stable carbon dioxide reforming of methane. J Catal 209:6–15CrossRef
173.
Zurück zum Zitat Zhao J, Xu X, Zhou W, Zhu Z (2017) An in situ formed MnO–Co composite catalyst layer over Ni–Ce0.8Sm0.2O2−x anodes for direct methane solid oxide fuel cells. J Mater Chem A 5:6494–6503CrossRef Zhao J, Xu X, Zhou W, Zhu Z (2017) An in situ formed MnO–Co composite catalyst layer over Ni–Ce0.8Sm0.2O2−x anodes for direct methane solid oxide fuel cells. J Mater Chem A 5:6494–6503CrossRef
174.
Zurück zum Zitat Bkour Q, Zhao K, Scudiero L, Han DJ, Yoon CW, Marin-Flores OG, Norton MG, Ha S (2017) Synthesis and performance of ceria-zirconia supported Ni–Mo nanoparticles for partial oxidation of isooctane. Appl Catal B Environ 212:97–105CrossRef Bkour Q, Zhao K, Scudiero L, Han DJ, Yoon CW, Marin-Flores OG, Norton MG, Ha S (2017) Synthesis and performance of ceria-zirconia supported Ni–Mo nanoparticles for partial oxidation of isooctane. Appl Catal B Environ 212:97–105CrossRef
175.
Zurück zum Zitat Hua B, Li M, Zhang YQ, Chen J, Sun YF, Yan N, Li J, Luo JL (2016) Facile synthesis of highly active and robust Ni–Mo bimetallic electrocatalyst for hydrocarbon oxidation in solid oxide fuel cells. ACS Energy Lett 1:225–230CrossRef Hua B, Li M, Zhang YQ, Chen J, Sun YF, Yan N, Li J, Luo JL (2016) Facile synthesis of highly active and robust Ni–Mo bimetallic electrocatalyst for hydrocarbon oxidation in solid oxide fuel cells. ACS Energy Lett 1:225–230CrossRef
176.
Zurück zum Zitat Escudero MJ, Parada IGD, Fuerte A, Serrano JL (2014) Analysis of the electrochemical performance of MoNi–CeO2 cermet as anode material for solid oxide fuel cell. Part I. H2, CH4 and H2/CH4 mixtures as fuels. J Power Sources 253:64–73CrossRef Escudero MJ, Parada IGD, Fuerte A, Serrano JL (2014) Analysis of the electrochemical performance of MoNi–CeO2 cermet as anode material for solid oxide fuel cell. Part I. H2, CH4 and H2/CH4 mixtures as fuels. J Power Sources 253:64–73CrossRef
177.
Zurück zum Zitat Garcia A, Yan N, Vincent A, Singh A, Hill JM, Chuang KT, Luo JL (2015) Highly cost-effective and sulfur/coking resistant VOx-grafted TiO2 nanoparticles as an efficient anode catalyst for direct conversion of dry sour methane in solid oxide fuel cells. J Mater Chem A3:23973–23980CrossRef Garcia A, Yan N, Vincent A, Singh A, Hill JM, Chuang KT, Luo JL (2015) Highly cost-effective and sulfur/coking resistant VOx-grafted TiO2 nanoparticles as an efficient anode catalyst for direct conversion of dry sour methane in solid oxide fuel cells. J Mater Chem A3:23973–23980CrossRef
Metadaten
Titel
Progress in Ni-based anode materials for direct hydrocarbon solid oxide fuel cells
verfasst von
Kangwei Wei
Xinxin Wang
Riyan Achmad Budiman
Jianhong Kang
Bin Lin
Fubao Zhou
Yihan Ling
Publikationsdatum
12.03.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2205-8

Weitere Artikel der Ausgabe 12/2018

Journal of Materials Science 12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.