Skip to main content
Erschienen in: Journal of Electronic Materials 8/2022

14.06.2022 | Review Article

Progress of Monomeric Perylene Diimide Derivatives As Non-Fullerene Acceptors for Organic Solar Cells

verfasst von: Linhua Zhang, Zhili Chen, Fengbo Sun, Yinuo Wang, Hanyi Bao, Xiang Gao, Zhitian Liu

Erschienen in: Journal of Electronic Materials | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Perylene diimides (PDIs) are a competitive class of non-fullerene acceptors in organic solar cells (OSCs), owing to their advantages of low cost and good stability. Monomeric PDIs need fewer synthetic steps thus reducing synthetic complexity, which is vital for mass production. The device performances of OSCs based on monomeric PDI acceptors have achieved great progress in recent years, with the highest power conversion efficiency over 12%. In this work, the various molecular design strategies of monomeric PDI acceptors since 2016 are categorized and introduced to provide perspectives on molecular design guidelines. The insight and limitations are determined, and perspectives on the further development of monomeric PDI acceptors are provided, which could help to overcome the obstacles of moderate short current density (Jsc) and fill factor values.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Wöhrle and D. Meissner, Organic Solar Cells. Adv. Mater. 3, 129 (1991).CrossRef D. Wöhrle and D. Meissner, Organic Solar Cells. Adv. Mater. 3, 129 (1991).CrossRef
2.
Zurück zum Zitat G. Li, R. Zhu and Y. Yang, Polymer Solar Cells. Nat. Photon. 6, 153 (2012).CrossRef G. Li, R. Zhu and Y. Yang, Polymer Solar Cells. Nat. Photon. 6, 153 (2012).CrossRef
3.
Zurück zum Zitat S. Günes, H. Neugebauer, and N.S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 107, 1324 (2007).CrossRef S. Günes, H. Neugebauer, and N.S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 107, 1324 (2007).CrossRef
4.
Zurück zum Zitat Y. Huang, E.J. Kramer, A.J. Heeger, and G.C. Bazan, Bulk Heterojunction Solar Cells: Morphology and Performance Relationships. Chem. Rev. 114, 7006 (2014).CrossRef Y. Huang, E.J. Kramer, A.J. Heeger, and G.C. Bazan, Bulk Heterojunction Solar Cells: Morphology and Performance Relationships. Chem. Rev. 114, 7006 (2014).CrossRef
5.
Zurück zum Zitat G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science 270, 1789 (1995).CrossRef G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science 270, 1789 (1995).CrossRef
6.
Zurück zum Zitat O. Inganäs, Organic Photovoltaics Over Three Decades. Adv. Mater. 30, 1800388 (2018).CrossRef O. Inganäs, Organic Photovoltaics Over Three Decades. Adv. Mater. 30, 1800388 (2018).CrossRef
7.
Zurück zum Zitat M. Mainville and M. Leclerc, Recent Progress on Indoor Organic Photovoltaics: From Molecular Design to Production Scale. ACS Energy Lett. 5, 1186 (2020).CrossRef M. Mainville and M. Leclerc, Recent Progress on Indoor Organic Photovoltaics: From Molecular Design to Production Scale. ACS Energy Lett. 5, 1186 (2020).CrossRef
8.
Zurück zum Zitat Y. Cui, Y. Wang, J. Bergqvist, H. Yao, Y. Xu, B. Gao, C. Yang, S. Zhang, O. Inganäs, F. Gao, and J. Hou, Wide-Gap Non-Fullerene Acceptor Enabling High-Performance Organic Photovoltaic Cells for Indoor Applications. Nat. Energy 4, 768 (2019).CrossRef Y. Cui, Y. Wang, J. Bergqvist, H. Yao, Y. Xu, B. Gao, C. Yang, S. Zhang, O. Inganäs, F. Gao, and J. Hou, Wide-Gap Non-Fullerene Acceptor Enabling High-Performance Organic Photovoltaic Cells for Indoor Applications. Nat. Energy 4, 768 (2019).CrossRef
9.
Zurück zum Zitat F.-C. Chen, Emerging Organic and Organic/Inorganic Hybrid Photovoltaic Devices for Specialty Applications: Low-Level-Lighting Energy Conversion and Biomedical Treatment. Adv. Opt. Mater. 7, 1800662 (2019).CrossRef F.-C. Chen, Emerging Organic and Organic/Inorganic Hybrid Photovoltaic Devices for Specialty Applications: Low-Level-Lighting Energy Conversion and Biomedical Treatment. Adv. Opt. Mater. 7, 1800662 (2019).CrossRef
10.
Zurück zum Zitat A. Wadsworth, Z. Hamid, J. Kosco, N. Gasparini, and I. McCulloch, The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. Adv. Mater. 32, 2001763 (2020).CrossRef A. Wadsworth, Z. Hamid, J. Kosco, N. Gasparini, and I. McCulloch, The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. Adv. Mater. 32, 2001763 (2020).CrossRef
11.
Zurück zum Zitat J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, and A.B. Holmes, Efficient Photodiodes from Interpenetrating Polymer Networks. Nature 376, 498 (1995).CrossRef J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, and A.B. Holmes, Efficient Photodiodes from Interpenetrating Polymer Networks. Nature 376, 498 (1995).CrossRef
12.
Zurück zum Zitat F. Zhao, H. Zhang, R. Zhang, J. Yuan, D. He, Y. Zou, and F. Gao, Emerging Approaches in enhancing the efficiency and stability in non-fullerene organic solar cells. Adv. Energy Mater. 10, 2002746 (2020).CrossRef F. Zhao, H. Zhang, R. Zhang, J. Yuan, D. He, Y. Zou, and F. Gao, Emerging Approaches in enhancing the efficiency and stability in non-fullerene organic solar cells. Adv. Energy Mater. 10, 2002746 (2020).CrossRef
13.
Zurück zum Zitat J. Liu, S. Chen, D. Qian, B. Gautam, G. Yang, J. Zhao, J. Bergqvist, F. Zhang, W. Ma, H. Ade, O. Inganäs, K. Gundogdu, F. Gao, and H. Yan, Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).CrossRef J. Liu, S. Chen, D. Qian, B. Gautam, G. Yang, J. Zhao, J. Bergqvist, F. Zhang, W. Ma, H. Ade, O. Inganäs, K. Gundogdu, F. Gao, and H. Yan, Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).CrossRef
14.
Zurück zum Zitat H. Bin, Z.-G. Zhang, L. Gao, S. Chen, L. Zhong, L. Xue, C. Yang, and Y. Li, Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2d-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 138, 4657 (2016).CrossRef H. Bin, Z.-G. Zhang, L. Gao, S. Chen, L. Zhong, L. Xue, C. Yang, and Y. Li, Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2d-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 138, 4657 (2016).CrossRef
15.
Zurück zum Zitat W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, and J. Hou, Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 4734 (2016).CrossRef W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, and J. Hou, Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 4734 (2016).CrossRef
16.
Zurück zum Zitat A. Tang, W. Song, B. Xiao, J. Guo, J. Min, Z. Ge, J. Zhang, Z. Wei, and E. Zhou, Benzotriazole-based acceptor and donors, coupled with chlorination, achieve a high Voc of 1.24 V and an efficiency of 10.5% in fullerene-free organic solar cells. Chem. Mater. 31, 3941 (2019).CrossRef A. Tang, W. Song, B. Xiao, J. Guo, J. Min, Z. Ge, J. Zhang, Z. Wei, and E. Zhou, Benzotriazole-based acceptor and donors, coupled with chlorination, achieve a high Voc of 1.24 V and an efficiency of 10.5% in fullerene-free organic solar cells. Chem. Mater. 31, 3941 (2019).CrossRef
17.
Zurück zum Zitat X. Wang, A. Tang, J. Yang, M. Du, J. Li, G. Li, Q. Guo, and E. Zhou, Tuning the intermolecular interaction of A2-A1-D-A1-A2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh VOC of ~1.2 V. Sci. China Chem. 63, 1666 (2020).CrossRef X. Wang, A. Tang, J. Yang, M. Du, J. Li, G. Li, Q. Guo, and E. Zhou, Tuning the intermolecular interaction of A2-A1-D-A1-A2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh VOC of ~1.2 V. Sci. China Chem. 63, 1666 (2020).CrossRef
18.
Zurück zum Zitat A. Tang, Z. Xiao, L. Ding, and E. Zhou, ~ 1.2 V open-circuit voltage from organic solar cells. J. Semicond. 42, 070202 (2021).CrossRef A. Tang, Z. Xiao, L. Ding, and E. Zhou, ~ 1.2 V open-circuit voltage from organic solar cells. J. Semicond. 42, 070202 (2021).CrossRef
19.
Zurück zum Zitat Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, and K. Sun, 18% Efficiency organic solar cells. Sci. Bull. 65, 272 (2020).CrossRef Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, and K. Sun, 18% Efficiency organic solar cells. Sci. Bull. 65, 272 (2020).CrossRef
20.
Zurück zum Zitat C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, and Y. Sun, Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605 (2021).CrossRef C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, and Y. Sun, Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605 (2021).CrossRef
21.
Zurück zum Zitat Y. Lin, Y. Firdaus, F.H. Isikgor, M.I. Nugraha, E. Yengel, G.T. Harrison, R. Hallani, A. El-Labban, H. Faber, C. Ma, X. Zheng, A. Subbiah, C.T. Howells, O.M. Bakr, I. McCulloch, S.D. Wolf, L. Tsetseris, and T.D. Anthopoulos, self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 5, 2935 (2020).CrossRef Y. Lin, Y. Firdaus, F.H. Isikgor, M.I. Nugraha, E. Yengel, G.T. Harrison, R. Hallani, A. El-Labban, H. Faber, C. Ma, X. Zheng, A. Subbiah, C.T. Howells, O.M. Bakr, I. McCulloch, S.D. Wolf, L. Tsetseris, and T.D. Anthopoulos, self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 5, 2935 (2020).CrossRef
22.
Zurück zum Zitat J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P.A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140 (2019).CrossRef J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P.A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140 (2019).CrossRef
23.
Zurück zum Zitat Z. Liu, X. Zhang, P. Li, and X. Gao, Recent development of efficient A-D-A type fused-ring electron acceptors for organic solar. Sol. Energy 174, 171 (2018).CrossRef Z. Liu, X. Zhang, P. Li, and X. Gao, Recent development of efficient A-D-A type fused-ring electron acceptors for organic solar. Sol. Energy 174, 171 (2018).CrossRef
24.
Zurück zum Zitat J. Hou, O. Inganäs, R.H. Friend, and F. Gao, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119 (2018).CrossRef J. Hou, O. Inganäs, R.H. Friend, and F. Gao, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119 (2018).CrossRef
25.
Zurück zum Zitat S. Li, C.-Z. Li, M. Shi, and H. Chen, New Phase for Organic solar cell research: emergence of y-series electron acceptors and their perspectives. ACS Energy Lett. 5, 1554 (2020).CrossRef S. Li, C.-Z. Li, M. Shi, and H. Chen, New Phase for Organic solar cell research: emergence of y-series electron acceptors and their perspectives. ACS Energy Lett. 5, 1554 (2020).CrossRef
26.
Zurück zum Zitat X. Liu, B. Xie, C. Duan, Z. Wang, B. Fan, K. Zhang, B. Lin, F.J.M. Colberts, W. Ma, R.A.J. Janssen, F. Huang, and Y. Cao, A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells. J. Mater. Chem. A 6, 395 (2018).CrossRef X. Liu, B. Xie, C. Duan, Z. Wang, B. Fan, K. Zhang, B. Lin, F.J.M. Colberts, W. Ma, R.A.J. Janssen, F. Huang, and Y. Cao, A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells. J. Mater. Chem. A 6, 395 (2018).CrossRef
27.
Zurück zum Zitat R. Kerremans, C. Kaiser, W. Li, N. Zarrabi, P. Meredith, and A. Armin, The optical constants of solution-processed semiconductors—new challenges with perovskites and non-fullerene acceptors. Adv. Opt. Mater. 8, 2000319 (2020).CrossRef R. Kerremans, C. Kaiser, W. Li, N. Zarrabi, P. Meredith, and A. Armin, The optical constants of solution-processed semiconductors—new challenges with perovskites and non-fullerene acceptors. Adv. Opt. Mater. 8, 2000319 (2020).CrossRef
28.
Zurück zum Zitat D. Li, X. Zhang, D. Liu, and T. Wang, Aggregation of non-fullerene acceptors in organic solar cells. J. Mater. Chem. A 8, 15607 (2020).CrossRef D. Li, X. Zhang, D. Liu, and T. Wang, Aggregation of non-fullerene acceptors in organic solar cells. J. Mater. Chem. A 8, 15607 (2020).CrossRef
29.
Zurück zum Zitat A. Armin, W. Li, O.J. Sandberg, Z. Xiao, L. Ding, J. Nelson, D. Neher, K. Vandewal, S. Shoaee, T. Wang, H. Ade, T. Heumüller, C. Brabec, and P. Meredith, A History and Perspective of Non-fullerene electron acceptors for organic solar cells. Adv. Energy Mater. 11, 2003570 (2021).CrossRef A. Armin, W. Li, O.J. Sandberg, Z. Xiao, L. Ding, J. Nelson, D. Neher, K. Vandewal, S. Shoaee, T. Wang, H. Ade, T. Heumüller, C. Brabec, and P. Meredith, A History and Perspective of Non-fullerene electron acceptors for organic solar cells. Adv. Energy Mater. 11, 2003570 (2021).CrossRef
30.
Zurück zum Zitat X. Du, T. Heumueller, W. Gruber, A. Classen, T. Unruh, N. Li, and C.J. Brabec, Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years. Joule 3, 215 (2019).CrossRef X. Du, T. Heumueller, W. Gruber, A. Classen, T. Unruh, N. Li, and C.J. Brabec, Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years. Joule 3, 215 (2019).CrossRef
31.
Zurück zum Zitat Y. Zhou, M. Li, H. Lu, H. Jin, X. Wang, Y. Zhang, S. Shen, Z. Ma, J. Song, and Z. Bo, High-efficiency organic solar cells based on a low-cost fully non-fused electron acceptor. Adv. Funct. Mater. 31, 2101742 (2021).CrossRef Y. Zhou, M. Li, H. Lu, H. Jin, X. Wang, Y. Zhang, S. Shen, Z. Ma, J. Song, and Z. Bo, High-efficiency organic solar cells based on a low-cost fully non-fused electron acceptor. Adv. Funct. Mater. 31, 2101742 (2021).CrossRef
32.
Zurück zum Zitat E.M. Speller, A.J. Clarke, J. Luke, H.K.H. Lee, J.R. Durrant, N. Li, T. Wang, H.C. Wong, J.-S. Kim, W.C. Tsoi, and Z. Li, From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. J. Mater. Chem. A 7, 23361 (2019).CrossRef E.M. Speller, A.J. Clarke, J. Luke, H.K.H. Lee, J.R. Durrant, N. Li, T. Wang, H.C. Wong, J.-S. Kim, W.C. Tsoi, and Z. Li, From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. J. Mater. Chem. A 7, 23361 (2019).CrossRef
33.
Zurück zum Zitat A. Wadsworth, M. Moser, A. Marks, M.S. Little, N. Gasparini, C.J. Brabec, D. Baran, and I. McCulloch, Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 48, 1596 (2019).CrossRef A. Wadsworth, M. Moser, A. Marks, M.S. Little, N. Gasparini, C.J. Brabec, D. Baran, and I. McCulloch, Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 48, 1596 (2019).CrossRef
34.
Zurück zum Zitat W. Li, D. Liu, and T. Wang, Stability Of Non-fullerene electron acceptors and their photovoltaic devices. Adv. Funct. Mater. 31, 2104552 (2021).CrossRef W. Li, D. Liu, and T. Wang, Stability Of Non-fullerene electron acceptors and their photovoltaic devices. Adv. Funct. Mater. 31, 2104552 (2021).CrossRef
35.
Zurück zum Zitat J. Min, Y.N. Luponosov, C. Cui, B. Kan, H. Chen, X. Wan, Y. Chen, S.A. Ponomarenko, Y. Li, and C.J. Brabec, Evaluation of electron donor materials for solution-processed organic solar cells via a novel figure of merit. Adv. Energy Mater. 7, 1700465 (2017).CrossRef J. Min, Y.N. Luponosov, C. Cui, B. Kan, H. Chen, X. Wan, Y. Chen, S.A. Ponomarenko, Y. Li, and C.J. Brabec, Evaluation of electron donor materials for solution-processed organic solar cells via a novel figure of merit. Adv. Energy Mater. 7, 1700465 (2017).CrossRef
36.
Zurück zum Zitat N. Li, I. McCulloch, and C.J. Brabec, Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ. Sci. 11, 1355 (2018).CrossRef N. Li, I. McCulloch, and C.J. Brabec, Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ. Sci. 11, 1355 (2018).CrossRef
37.
Zurück zum Zitat M. Moser, A. Wadsworth, N. Gasparini, and I. McCulloch, Challenges to the success of commercial organic photovoltaic products. Adv. Energy Mater. 11, 2100056 (2021).CrossRef M. Moser, A. Wadsworth, N. Gasparini, and I. McCulloch, Challenges to the success of commercial organic photovoltaic products. Adv. Energy Mater. 11, 2100056 (2021).CrossRef
38.
Zurück zum Zitat Y. Gao, M. Cui, S. Qu, H. Zhao, Z. Shen, F. Tan, Y. Dong, C. Qin, Z. Wang, W. Zhang, Z. Wang, and Y. Lei, Efficient organic solar cells enabled by simple non-fused electron donors with low synthetic complexity. Small 18, 2104623 (2021).CrossRef Y. Gao, M. Cui, S. Qu, H. Zhao, Z. Shen, F. Tan, Y. Dong, C. Qin, Z. Wang, W. Zhang, Z. Wang, and Y. Lei, Efficient organic solar cells enabled by simple non-fused electron donors with low synthetic complexity. Small 18, 2104623 (2021).CrossRef
39.
Zurück zum Zitat S. Park and H.J. Son, Intrinsic photo-degradation and mechanism of polymer solar cells: the crucial role of non-fullerene acceptors. J. Mater. Chem. A 7, 25830 (2019).CrossRef S. Park and H.J. Son, Intrinsic photo-degradation and mechanism of polymer solar cells: the crucial role of non-fullerene acceptors. J. Mater. Chem. A 7, 25830 (2019).CrossRef
40.
Zurück zum Zitat Z.-X. Liu, Z.-P. Yu, Z. Shen, C. He, T.-K. Lau, Z. Chen, H. Zhu, X. Lu, Z. Xie, H. Chen, and C.-Z. Li, Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nat. Commun. 12, 3049 (2021).CrossRef Z.-X. Liu, Z.-P. Yu, Z. Shen, C. He, T.-K. Lau, Z. Chen, H. Zhu, X. Lu, Z. Xie, H. Chen, and C.-Z. Li, Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nat. Commun. 12, 3049 (2021).CrossRef
41.
Zurück zum Zitat A. Nowak-Król, K. Shoyama, M. Stolte, and F. Würthner, Naphthalene and perylene diimides: Better alternatives to fullerenes for organic electronics? Chem. Commun. 54, 13763 (2018).CrossRef A. Nowak-Król, K. Shoyama, M. Stolte, and F. Würthner, Naphthalene and perylene diimides: Better alternatives to fullerenes for organic electronics? Chem. Commun. 54, 13763 (2018).CrossRef
42.
Zurück zum Zitat L. Chen, C. Li, and K. Müllen, Beyond perylene diimides: synthesis, assembly and function of higher rylene chromophores. J. Mater. Chem. C 2, 1938 (2014).CrossRef L. Chen, C. Li, and K. Müllen, Beyond perylene diimides: synthesis, assembly and function of higher rylene chromophores. J. Mater. Chem. C 2, 1938 (2014).CrossRef
43.
Zurück zum Zitat G. Li, W. Yang, S. Wang, T. Liu, C. Yan, G. Li, Y. Zhang, D. Li, X. Wang, P. Hao, J. Li, L. Huo, H. Yan, and B. Tang, Methane-perylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells. J. Mater. Chem. C 7, 10901 (2019).CrossRef G. Li, W. Yang, S. Wang, T. Liu, C. Yan, G. Li, Y. Zhang, D. Li, X. Wang, P. Hao, J. Li, L. Huo, H. Yan, and B. Tang, Methane-perylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells. J. Mater. Chem. C 7, 10901 (2019).CrossRef
44.
Zurück zum Zitat K. Ding, T. Shan, J. Xu, M. Li, Y. Wang, Y. Zhang, Z. Xie, Z. Ma, F. Liu, and H. Zhong, A perylene diimide-containing acceptor enables high fill factor in organic solar cells. Chem. Commun. 56, 11433 (2020).CrossRef K. Ding, T. Shan, J. Xu, M. Li, Y. Wang, Y. Zhang, Z. Xie, Z. Ma, F. Liu, and H. Zhong, A perylene diimide-containing acceptor enables high fill factor in organic solar cells. Chem. Commun. 56, 11433 (2020).CrossRef
45.
Zurück zum Zitat Y.-C. Lin, C.-H. Chen, N.-Z. She, C.-Y. Juan, B. Chang, M.-H. Li, H.-C. Wang, H.-W. Cheng, A. Yabushita, Y. Yang, and K.-H. Wei, Twisted-graphene-like perylene diimide with dangling functional chromophores as tunable small-molecule acceptors in binary-blend active layers of organic photovoltaics. J. Mater. Chem. A 9, 20510 (2021).CrossRef Y.-C. Lin, C.-H. Chen, N.-Z. She, C.-Y. Juan, B. Chang, M.-H. Li, H.-C. Wang, H.-W. Cheng, A. Yabushita, Y. Yang, and K.-H. Wei, Twisted-graphene-like perylene diimide with dangling functional chromophores as tunable small-molecule acceptors in binary-blend active layers of organic photovoltaics. J. Mater. Chem. A 9, 20510 (2021).CrossRef
46.
Zurück zum Zitat G. Zhang, J. Feng, X. Xu, W. Ma, Y. Li, and Q. Peng, Perylene diimide-based nonfullerene polymer solar cells with over 11% efficiency fabricated by smart molecular design and supramolecular morphology optimization. Adv. Funct. Mater. 29, 1906587 (2019).CrossRef G. Zhang, J. Feng, X. Xu, W. Ma, Y. Li, and Q. Peng, Perylene diimide-based nonfullerene polymer solar cells with over 11% efficiency fabricated by smart molecular design and supramolecular morphology optimization. Adv. Funct. Mater. 29, 1906587 (2019).CrossRef
47.
Zurück zum Zitat S. Chen, D. Meng, J. Huang, N. Liang, Y. Li, F. Liu, H. Yan, and Z. Wang, Symmetry-induced orderly assembly achieving high-performance perylene diimide-based nonfullerene organic solar cells. CCS Chem. 3, 78 (2021).CrossRef S. Chen, D. Meng, J. Huang, N. Liang, Y. Li, F. Liu, H. Yan, and Z. Wang, Symmetry-induced orderly assembly achieving high-performance perylene diimide-based nonfullerene organic solar cells. CCS Chem. 3, 78 (2021).CrossRef
48.
Zurück zum Zitat Z. Liu, Y. Wu, Q. Zhang, and X. Gao, Non-fullerene small molecule acceptors based on perylene diimides. J. Mater. Chem. A 4, 17604 (2016).CrossRef Z. Liu, Y. Wu, Q. Zhang, and X. Gao, Non-fullerene small molecule acceptors based on perylene diimides. J. Mater. Chem. A 4, 17604 (2016).CrossRef
49.
Zurück zum Zitat R. Singh, M. Kim, J.-J. Lee, T. Ye, P.E. Keivanidis, and K. Cho, Excimer formation effects and trap-assisted charge recombination loss channels in organic solar cells of perylene diimide dimer acceptors. J. Mater. Chem. C 8, 1686 (2020).CrossRef R. Singh, M. Kim, J.-J. Lee, T. Ye, P.E. Keivanidis, and K. Cho, Excimer formation effects and trap-assisted charge recombination loss channels in organic solar cells of perylene diimide dimer acceptors. J. Mater. Chem. C 8, 1686 (2020).CrossRef
50.
Zurück zum Zitat M. Nazari, E. Cieplechowicz, T.A. Welsh, and G.C. Welch, A direct comparison of monomeric vs. dimeric and non-annulated vs. N-annulated perylene diimide electron acceptors for organic photovoltaics. New J. Chem. 43, 5187 (2019).CrossRef M. Nazari, E. Cieplechowicz, T.A. Welsh, and G.C. Welch, A direct comparison of monomeric vs. dimeric and non-annulated vs. N-annulated perylene diimide electron acceptors for organic photovoltaics. New J. Chem. 43, 5187 (2019).CrossRef
51.
Zurück zum Zitat G. Gao, N. Liang, H. Geng, W. Jiang, H. Fu, J. Feng, J. Hou, X. Feng, and Z. Wang, Spiro-fused perylene diimide arrays. J. Am. Chem. Soc. 139, 15914 (2017).CrossRef G. Gao, N. Liang, H. Geng, W. Jiang, H. Fu, J. Feng, J. Hou, X. Feng, and Z. Wang, Spiro-fused perylene diimide arrays. J. Am. Chem. Soc. 139, 15914 (2017).CrossRef
52.
Zurück zum Zitat R. Singh, J. Lee, M. Kim, P.E. Keivanidis, and K. Cho, Control of the molecular geometry and nanoscale morphology in perylene diimide based bulk heterojunctions enables an efficient non-fullerene organic solar cell. J. Mater. Chem. A 5, 210 (2017).CrossRef R. Singh, J. Lee, M. Kim, P.E. Keivanidis, and K. Cho, Control of the molecular geometry and nanoscale morphology in perylene diimide based bulk heterojunctions enables an efficient non-fullerene organic solar cell. J. Mater. Chem. A 5, 210 (2017).CrossRef
53.
Zurück zum Zitat H. Yin, S. Chen, P. Bi, X. Xu, S.H. Cheung, X. Hao, Q. Peng, X. Zhu, and S.K. So, Rationalizing device performance of perylenediimide derivatives as acceptors for bulk-heterojunction organic solar cells. Org. Electron. 65, 156 (2019).CrossRef H. Yin, S. Chen, P. Bi, X. Xu, S.H. Cheung, X. Hao, Q. Peng, X. Zhu, and S.K. So, Rationalizing device performance of perylenediimide derivatives as acceptors for bulk-heterojunction organic solar cells. Org. Electron. 65, 156 (2019).CrossRef
54.
Zurück zum Zitat R.D. Pettipas, C.L. Radford, and T.L. Kelly, Regioisomerically pure 1,7-dicyanoperylene diimide dimer for charge extraction from donors with high electron affinities. ACS Omega 5, 16547 (2020).CrossRef R.D. Pettipas, C.L. Radford, and T.L. Kelly, Regioisomerically pure 1,7-dicyanoperylene diimide dimer for charge extraction from donors with high electron affinities. ACS Omega 5, 16547 (2020).CrossRef
55.
Zurück zum Zitat H. Wang, Q. Fan, L. Chen, and Y. Xiao, Amino-acid ester derived perylene diimides electron acceptor materials: An efficient strategy for green-solvent-processed organic solar cells. Dyes Pigm. 164, 384 (2019).CrossRef H. Wang, Q. Fan, L. Chen, and Y. Xiao, Amino-acid ester derived perylene diimides electron acceptor materials: An efficient strategy for green-solvent-processed organic solar cells. Dyes Pigm. 164, 384 (2019).CrossRef
56.
Zurück zum Zitat K. Fujimoto, S. Izawa, Y. Arikai, S. Sugimoto, H. Oue, T. Inuzuka, N. Uemura, M. Sakamoto, M. Hiramoto, and M. Takahashi, Regioselective bay-functionalization of perylenes toward tailor-made synthesis of acceptor materials for organic photovoltaics. ChemPlusChem 85, 285 (2020).CrossRef K. Fujimoto, S. Izawa, Y. Arikai, S. Sugimoto, H. Oue, T. Inuzuka, N. Uemura, M. Sakamoto, M. Hiramoto, and M. Takahashi, Regioselective bay-functionalization of perylenes toward tailor-made synthesis of acceptor materials for organic photovoltaics. ChemPlusChem 85, 285 (2020).CrossRef
57.
Zurück zum Zitat J. Yi, J. Wang, Y. Lin, W. Gao, Y. Ma, H. Tan, H. Wang, and C.-Q. Ma, Molecular geometry regulation of bay-phenyl substituted perylenediimide derivatives with bulky alkyl chain for use in organic solar cells as the electron acceptor. Dyes Pigm. 136, 335 (2017).CrossRef J. Yi, J. Wang, Y. Lin, W. Gao, Y. Ma, H. Tan, H. Wang, and C.-Q. Ma, Molecular geometry regulation of bay-phenyl substituted perylenediimide derivatives with bulky alkyl chain for use in organic solar cells as the electron acceptor. Dyes Pigm. 136, 335 (2017).CrossRef
58.
Zurück zum Zitat R. Mishra, R. Regar, V. Singh, P. Panini, R. Singhal, M.L. Keshtov, G.D. Sharma, and J. Sankar, Modulation of the power conversion efficiency of organic solar cells via architectural variation of a promising non-fullerene acceptor. J. Mater. Chem. A 6, 574 (2018).CrossRef R. Mishra, R. Regar, V. Singh, P. Panini, R. Singhal, M.L. Keshtov, G.D. Sharma, and J. Sankar, Modulation of the power conversion efficiency of organic solar cells via architectural variation of a promising non-fullerene acceptor. J. Mater. Chem. A 6, 574 (2018).CrossRef
59.
Zurück zum Zitat T. Adhikari, Z. Ghoshouni Rahami, J.-M. Nunzi, and O. Lebel, Synthesis, characterization and photovoltaic performance of novel glass-forming perylenediimide derivatives. Organ. Electron. 34, 146 (2016).CrossRef T. Adhikari, Z. Ghoshouni Rahami, J.-M. Nunzi, and O. Lebel, Synthesis, characterization and photovoltaic performance of novel glass-forming perylenediimide derivatives. Organ. Electron. 34, 146 (2016).CrossRef
60.
Zurück zum Zitat D. Meng, H. Fu, B. Fan, J. Zhang, Y. Li, Y. Sun, and Z. Wang, Rigid nonfullerene acceptors based on triptycene–perylene dye for organic solar cells. Chem. An Asian J. 12, 1286 (2017).CrossRef D. Meng, H. Fu, B. Fan, J. Zhang, Y. Li, Y. Sun, and Z. Wang, Rigid nonfullerene acceptors based on triptycene–perylene dye for organic solar cells. Chem. An Asian J. 12, 1286 (2017).CrossRef
61.
Zurück zum Zitat A.D. Hendsbee, J.-P. Sun, W.K. Law, H. Yan, I.G. Hill, D.M. Spasyuk, and G.C. Welch, Synthesis, self-assembly, and solar cell performance of N-annulated perylene diimide non-fullerene acceptors. Chem. Mater. 28, 7098 (2016).CrossRef A.D. Hendsbee, J.-P. Sun, W.K. Law, H. Yan, I.G. Hill, D.M. Spasyuk, and G.C. Welch, Synthesis, self-assembly, and solar cell performance of N-annulated perylene diimide non-fullerene acceptors. Chem. Mater. 28, 7098 (2016).CrossRef
62.
Zurück zum Zitat A.-J. Payne, S. Li, S.V. Dayneko, C. Risko, and G.C. Welch, An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells. Chem. Commun. 53, 10168 (2017).CrossRef A.-J. Payne, S. Li, S.V. Dayneko, C. Risko, and G.C. Welch, An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells. Chem. Commun. 53, 10168 (2017).CrossRef
63.
Zurück zum Zitat H.-C. Chen, B.-H. Jiang, C.-P. Hsu, Y.-Y. Tsai, R.-J. Jeng, C.-P. Chen, and K.-T. Wong, The twisted benzo[ghi]-perylenetriimide dimer as a 3D electron acceptor for fullerene-free organic photovoltaics. Chem. A Eur. J. 24, 17590 (2018).CrossRef H.-C. Chen, B.-H. Jiang, C.-P. Hsu, Y.-Y. Tsai, R.-J. Jeng, C.-P. Chen, and K.-T. Wong, The twisted benzo[ghi]-perylenetriimide dimer as a 3D electron acceptor for fullerene-free organic photovoltaics. Chem. A Eur. J. 24, 17590 (2018).CrossRef
64.
Zurück zum Zitat Y. Fan, K. Ziabrev, S. Zhang, B. Lin, S. Barlow, and S.R. Marder, Comparison of the optical and electrochemical properties of bi(perylene diimide)s linked through ortho and bay positions. ACS Omega 2, 377 (2017).CrossRef Y. Fan, K. Ziabrev, S. Zhang, B. Lin, S. Barlow, and S.R. Marder, Comparison of the optical and electrochemical properties of bi(perylene diimide)s linked through ortho and bay positions. ACS Omega 2, 377 (2017).CrossRef
65.
Zurück zum Zitat H. Wang, L. Chen, and Y. Xiao, A simple molecular structure of ortho-derived perylene diimide diploid for non-fullerene organic solar cells with efficiency over 8%. J. Mater. Chem. A 5, 22288 (2017).CrossRef H. Wang, L. Chen, and Y. Xiao, A simple molecular structure of ortho-derived perylene diimide diploid for non-fullerene organic solar cells with efficiency over 8%. J. Mater. Chem. A 5, 22288 (2017).CrossRef
66.
Zurück zum Zitat R. Ganesamoorthy, R. Vijayaraghavan, and P. Sakthivel, Perylene-diimide based donor–acceptor–donor typesmall-molecule acceptors for solution-processable organic solar cells. J. Electron. Mater. 46, 6784 (2017).CrossRef R. Ganesamoorthy, R. Vijayaraghavan, and P. Sakthivel, Perylene-diimide based donor–acceptor–donor typesmall-molecule acceptors for solution-processable organic solar cells. J. Electron. Mater. 46, 6784 (2017).CrossRef
67.
Zurück zum Zitat H.J. Park, M.-J. Kim, J.B. Park, I.-N. Kang, U.C. Yoon, and D.-H. Hwang, New 1,7-disubstituted perylenediimides as molecular acceptors for organic solar cells. Bull. Korean Chem. Soc. 38, 484 (2017).CrossRef H.J. Park, M.-J. Kim, J.B. Park, I.-N. Kang, U.C. Yoon, and D.-H. Hwang, New 1,7-disubstituted perylenediimides as molecular acceptors for organic solar cells. Bull. Korean Chem. Soc. 38, 484 (2017).CrossRef
68.
Zurück zum Zitat X. Zhang, J. Yao, and C. Zhan, Synthesis and photovoltaic properties of low bandgap dimeric perylene diimide based non-fullerene acceptors. Sci. China Chem. 59, 209 (2016).CrossRef X. Zhang, J. Yao, and C. Zhan, Synthesis and photovoltaic properties of low bandgap dimeric perylene diimide based non-fullerene acceptors. Sci. China Chem. 59, 209 (2016).CrossRef
69.
Zurück zum Zitat C. Stenta, D. Molina, A. Viterisi, M.P. Montero-Rama, S. Pla, W. Cambarau, F. Fernández-Lázaro, E. Palomares, L.F. Marsal, and Á. Sastre-Santos, Diphenylphenoxy-thiophene-PDI dimers as acceptors for OPV applications with open circuit voltage approaching 1 Volt. Nanomaterials 8, 211 (2018).CrossRef C. Stenta, D. Molina, A. Viterisi, M.P. Montero-Rama, S. Pla, W. Cambarau, F. Fernández-Lázaro, E. Palomares, L.F. Marsal, and Á. Sastre-Santos, Diphenylphenoxy-thiophene-PDI dimers as acceptors for OPV applications with open circuit voltage approaching 1 Volt. Nanomaterials 8, 211 (2018).CrossRef
70.
Zurück zum Zitat P. Simón Marqués, F. Tintori, J.M. Andrés Castán, P. Josse, C. Dalinot, M. Allain, G. Welch, P. Blanchard, and C. Cabanetos, Indeno[1,2-b]thiophene end-capped perylene diimide: should the 1,6-regioisomers be systematically considered as a byproduct? Sci. Rep. 10, 3262 (2020).CrossRef P. Simón Marqués, F. Tintori, J.M. Andrés Castán, P. Josse, C. Dalinot, M. Allain, G. Welch, P. Blanchard, and C. Cabanetos, Indeno[1,2-b]thiophene end-capped perylene diimide: should the 1,6-regioisomers be systematically considered as a byproduct? Sci. Rep. 10, 3262 (2020).CrossRef
71.
Zurück zum Zitat M. Bolognesi, D. Gedefaw, M. Cavazzini, M. Catellani, M.R. Andersson, M. Muccini, E. Kozma, and M. Seri, Side chain modification on PDI-spirobifluorene-based molecular acceptors and its impact on organic solar cell performances. New J. Chem. 42, 18633 (2018).CrossRef M. Bolognesi, D. Gedefaw, M. Cavazzini, M. Catellani, M.R. Andersson, M. Muccini, E. Kozma, and M. Seri, Side chain modification on PDI-spirobifluorene-based molecular acceptors and its impact on organic solar cell performances. New J. Chem. 42, 18633 (2018).CrossRef
72.
Zurück zum Zitat K. Fujimoto, S. Izawa, A. Takahashi, T. Inuzuka, K. Sanada, M. Sakamoto, Y. Nakayama, M. Hiramoto, and M. Takahashi, Curved perylene diimides fused with seven-membered rings. Chem. An Asian J. 16, 690 (2021).CrossRef K. Fujimoto, S. Izawa, A. Takahashi, T. Inuzuka, K. Sanada, M. Sakamoto, Y. Nakayama, M. Hiramoto, and M. Takahashi, Curved perylene diimides fused with seven-membered rings. Chem. An Asian J. 16, 690 (2021).CrossRef
73.
Zurück zum Zitat Y. Cai, X. Guo, X. Sun, D. Wei, M. Yu, L. Huo, and Y. Sun, A twisted monomeric perylenediimide electron acceptor for efficient organic solar cells. Sci. China Mater. 59, 427 (2016).CrossRef Y. Cai, X. Guo, X. Sun, D. Wei, M. Yu, L. Huo, and Y. Sun, A twisted monomeric perylenediimide electron acceptor for efficient organic solar cells. Sci. China Mater. 59, 427 (2016).CrossRef
74.
Zurück zum Zitat B. Mahlmeister, R. Renner, O. Anhalt, M. Stolte, and F. Würthner, Axially chiral bay-tetraarylated perylene bisimide dyes as non-fullerene acceptors in organic solar cells. J. Mater. Chem. C 10, 2581–2591 (2022).CrossRef B. Mahlmeister, R. Renner, O. Anhalt, M. Stolte, and F. Würthner, Axially chiral bay-tetraarylated perylene bisimide dyes as non-fullerene acceptors in organic solar cells. J. Mater. Chem. C 10, 2581–2591 (2022).CrossRef
75.
Zurück zum Zitat N.D. Eastham, A.S. Dudnik, T.J. Aldrich, E.F. Manley, T.J. Fauvell, P.E. Hartnett, M.R. Wasielewski, L.X. Chen, F.S. Melkonyan, A. Facchetti, R.P.H. Chang, and T.J. Marks, Small molecule acceptor and polymer donor crystallinity and aggregation effects on microstructure templating: understanding photovoltaic response in fullerene-free solar cells. Chem. Mater. 29, 4432 (2017).CrossRef N.D. Eastham, A.S. Dudnik, T.J. Aldrich, E.F. Manley, T.J. Fauvell, P.E. Hartnett, M.R. Wasielewski, L.X. Chen, F.S. Melkonyan, A. Facchetti, R.P.H. Chang, and T.J. Marks, Small molecule acceptor and polymer donor crystallinity and aggregation effects on microstructure templating: understanding photovoltaic response in fullerene-free solar cells. Chem. Mater. 29, 4432 (2017).CrossRef
76.
Zurück zum Zitat S. Işık Büyükekşi, E.B. Orman, N. Acar, A. Altındal, A.R. Özkaya, and A. Şengül, Electrochemical, photovoltaic and DFT studies on hybrid materials based on supramolecular self-assembly of a ditopic twisted perylene diimide with square-planar platinum(II)- and/or palladium(II)-2,2′:6′,2″-terpyridyl complex ions. Dyes Pigm. 161, 66 (2019).CrossRef S. Işık Büyükekşi, E.B. Orman, N. Acar, A. Altındal, A.R. Özkaya, and A. Şengül, Electrochemical, photovoltaic and DFT studies on hybrid materials based on supramolecular self-assembly of a ditopic twisted perylene diimide with square-planar platinum(II)- and/or palladium(II)-2,2′:6′,2″-terpyridyl complex ions. Dyes Pigm. 161, 66 (2019).CrossRef
77.
Zurück zum Zitat T.-J. Wen, D. Wang, L. Tao, Y. Xiao, Y.-D. Tao, Y. Li, X. Lu, Y. Fang, C.-Z. Li, H. Chen, and D. Yang, Simple near-infrared electron acceptors for efficient photovoltaics and sensitive photodetectors. ACS Appl. Mater. Interfaces. 12, 39515 (2020).CrossRef T.-J. Wen, D. Wang, L. Tao, Y. Xiao, Y.-D. Tao, Y. Li, X. Lu, Y. Fang, C.-Z. Li, H. Chen, and D. Yang, Simple near-infrared electron acceptors for efficient photovoltaics and sensitive photodetectors. ACS Appl. Mater. Interfaces. 12, 39515 (2020).CrossRef
78.
Zurück zum Zitat R. Po, G. Bianchi, C. Carbonera, and A. Pellegrino, “All that glisters is not gold”: an analysis of the synthetic complexity of efficient polymer donors for polymer solar cells. Macromolecules 48, 453 (2015).CrossRef R. Po, G. Bianchi, C. Carbonera, and A. Pellegrino, “All that glisters is not gold”: an analysis of the synthetic complexity of efficient polymer donors for polymer solar cells. Macromolecules 48, 453 (2015).CrossRef
79.
Zurück zum Zitat E. Aluicio-Sarduy, R. Singh, Z. Kan, T. Ye, A. Baidak, A. Calloni, G. Berti, L. Duò, A. Iosifidis, S. Beaupré, M. Leclerc, H.-J. Butt, G. Floudas, and P.E. Keivanidis, Elucidating the impact of molecular packing and device architecture on the performance of nanostructured perylene diimide solar cells. ACS Appl. Mater. Interfaces. 7, 8687 (2015).CrossRef E. Aluicio-Sarduy, R. Singh, Z. Kan, T. Ye, A. Baidak, A. Calloni, G. Berti, L. Duò, A. Iosifidis, S. Beaupré, M. Leclerc, H.-J. Butt, G. Floudas, and P.E. Keivanidis, Elucidating the impact of molecular packing and device architecture on the performance of nanostructured perylene diimide solar cells. ACS Appl. Mater. Interfaces. 7, 8687 (2015).CrossRef
80.
Zurück zum Zitat J.J. Dittmer, E.A. Marseglia, and R.H. Friend, Electron trapping in dye/polymer blend photovoltaic cells. Adv. Mater. 12, 1270 (2000).CrossRef J.J. Dittmer, E.A. Marseglia, and R.H. Friend, Electron trapping in dye/polymer blend photovoltaic cells. Adv. Mater. 12, 1270 (2000).CrossRef
81.
Zurück zum Zitat G. Qian and Z.Y. Wang, Near-infrared organic compounds and emerging applications. Chem. An Asian J. 5, 1006 (2010).CrossRef G. Qian and Z.Y. Wang, Near-infrared organic compounds and emerging applications. Chem. An Asian J. 5, 1006 (2010).CrossRef
82.
Zurück zum Zitat P. Cheng and Y. Yang, Narrowing the Band Gap: the key to high-performance organic photovoltaics. Acc. Chem. Res. 53, 1218 (2020).CrossRef P. Cheng and Y. Yang, Narrowing the Band Gap: the key to high-performance organic photovoltaics. Acc. Chem. Res. 53, 1218 (2020).CrossRef
83.
Zurück zum Zitat R. Regar, R. Mishra, R. Singhal, G.D. Sharma, and J. Sankar, NIR absorbing ortho-π-extended perylene bisimide as a promising material for bulk heterojunction organic solar cells. J. Mater. Chem. A 7, 3012 (2019).CrossRef R. Regar, R. Mishra, R. Singhal, G.D. Sharma, and J. Sankar, NIR absorbing ortho-π-extended perylene bisimide as a promising material for bulk heterojunction organic solar cells. J. Mater. Chem. A 7, 3012 (2019).CrossRef
84.
Zurück zum Zitat J. Ma, Y. Zhang, H. Zhang, and X. He, Near infrared absorption/emission perylenebisimide fluorophores with geometry relaxation-induced large Stokes shift. RSC Adv. 10, 35840 (2020).CrossRef J. Ma, Y. Zhang, H. Zhang, and X. He, Near infrared absorption/emission perylenebisimide fluorophores with geometry relaxation-induced large Stokes shift. RSC Adv. 10, 35840 (2020).CrossRef
85.
Zurück zum Zitat M. Nakano, K. Nakano, K. Takimiya, and K. Tajima, Two isomeric perylenothiophene diimides: physicochemical properties and applications in organic semiconducting devices. J. Mater. Chem. C 7, 2267 (2019).CrossRef M. Nakano, K. Nakano, K. Takimiya, and K. Tajima, Two isomeric perylenothiophene diimides: physicochemical properties and applications in organic semiconducting devices. J. Mater. Chem. C 7, 2267 (2019).CrossRef
86.
Zurück zum Zitat X. Liu, M. Hu, Y. Li, X. Zhao, Y. Zhang, Y. Hu, Z. Yuan, and Y. Chen, 1,2,4-Triazoline-3,5-dione substituted perylene diimides as near infrared acceptors for bulk heterojunction organic solar cells. Dyes Pigm. 187, 109108 (2021).CrossRef X. Liu, M. Hu, Y. Li, X. Zhao, Y. Zhang, Y. Hu, Z. Yuan, and Y. Chen, 1,2,4-Triazoline-3,5-dione substituted perylene diimides as near infrared acceptors for bulk heterojunction organic solar cells. Dyes Pigm. 187, 109108 (2021).CrossRef
Metadaten
Titel
Progress of Monomeric Perylene Diimide Derivatives As Non-Fullerene Acceptors for Organic Solar Cells
verfasst von
Linhua Zhang
Zhili Chen
Fengbo Sun
Yinuo Wang
Hanyi Bao
Xiang Gao
Zhitian Liu
Publikationsdatum
14.06.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 8/2022
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09728-y

Weitere Artikel der Ausgabe 8/2022

Journal of Electronic Materials 8/2022 Zur Ausgabe

Neuer Inhalt