Abstract
The exploration of multifunctional platforms for diverse applications has gained tremendous advancement towards the designing and engineering of numerous versatile materials with many functions combined into nanostructured hybrid systems. Such materials combine the benefits of different components to improve the efficiency, reliability, cost-efficiency, and scalability of the hybrid system. Trivalent lanthanide ion (Ln3+)-activated hybrid phosphors are important for designing new multifunctional materials with modulated optical and magnetic properties. Thus, their studies open up new directions in material sciences and related technologies. This chapter presents a broad overview of the recently investigated various Ln3+-based inorganic hybrid materials. It covers the hybrids of Ln3+-doped inorganic phosphors, including oxides, fluorides, phosphates, vanadates, sulfides, with materials such as (a) semiconductors (TiO2/ZnO), (b) magnetic nanoparticles (Fe3O4), (c) metal/plasmonic nanoparticles (Au/Ag), (d) graphene and its derivatives, (e) quantum dots, (f) polymers, and others. We will present the study of these materials for their modulated luminescence efficiency and respective advantages in the applications of sensing, optical telecommunication, energy harvesting, multimodal imaging, biomedicine, etc. Furthermore, this chapter will also focus on the synthesis methods and approaches, including surface functionalization and modification, core–shell processing, controlled assembly, and the relationship between the composition, structure, and properties. We anticipate that a fusion of distinctive structural aspects and integrated functions will compel researchers to create smart hybrid materials and exploit this opportunity in all three realms of science: physics, chemistry, and biology.