Skip to main content
Erschienen in: International Journal of Computer Vision 3/2021

03.11.2020

Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild

verfasst von: Xin Chen, Lingxi Xie, Jun Wu, Qi Tian

Erschienen in: International Journal of Computer Vision | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the rapid development of neural architecture search (NAS), researchers found powerful network architectures for a wide range of vision tasks. Like the manually designed counterparts, we desire the automatically searched architectures to have the ability of being freely transferred to different scenarios. This paper formally puts forward this problem, referred to as NAS in the wild, which explores the possibility of finding the optimal architecture in a proxy dataset and then deploying it to mostly unseen scenarios. We instantiate this setting using a currently popular algorithm named differentiable architecture search (DARTS), which often suffers unsatisfying performance while being transferred across different tasks. We argue that the accuracy drop originates from the formulation that uses a super-network for search but a sub-network for re-training. The different properties of these stages have resulted in a significant optimization gap, and consequently, the architectural parameters “over-fit” the super-network. To alleviate the gap, we present a progressive method that gradually increases the network depth during the search stage, which leads to the Progressive DARTS (P-DARTS) algorithm. With a reduced search cost (7 hours on a single GPU), P-DARTS achieves improved performance on both the proxy dataset (CIFAR10) and a few target problems (ImageNet classification, COCO detection and three ReID benchmarks). Our code is available at https://github.com/chenxin061/pdarts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
We also tried to start with architectural parameters learned from the previous stage, \({\mathfrak {S}}_{k-1}\), and adjust them according to Eq. 1 to ensure that the weights of preserved operations should still sum to one. This strategy reported slightly lower accuracy. Actually, we find that only an average of 5.3 (out of 14 normal edges) most significant operations in \({\mathfrak {S}}_1\) continue to have the largest weight in \({\mathfrak {S}}_2\), and the number is only slightly increased to 6.7 from \({\mathfrak {S}}_2\) to \({\mathfrak {S}}_3\) – this is to say, deeper architectures may have altered preferences.
 
2
Here, we do not change the batch size to fit into the GPU memory because even under a fixed batch size, the usage of GPU memory can vary since the set of preserved candidates can differ, for example, a convolutional operator occupies more memory than a pooling operator. This is why we need to discuss the stability of GPU memory usage.
 
3
The mean test error of these three trials is \(3.61\%\pm 0.21\%\) (the corresponding errors are \(3.43\%\), \(3.51\%\) and \(3.89\%\), respectively).
 
4
Individually, swish activation function reduced the top-1 test error of NASNet-A from \(26.4\%\) to \(25.0\%\)(Ramachandran et al. 2017), SE module brought an performance gain of \(0.7\%\) (from \(25.5\%\) to \(24.8\%\)) on MnasNet (Tan et al. 2019), and AutoAugment achieved an accuracy gain of \(1.3\%\) on ResNet-50 (Cubuk et al. 2018). With swish activation function, SE module and AutoAugment, the compound gain is \(2.5\%\) (from \(25.2\%\) of MnasNet-92 to \(22.7\%\) of EfficientNet-B0. )
 
Literatur
Zurück zum Zitat Baker, B., Gupta, O., Naik, N., & Raskar, R. (2017). Designing neural network architectures using reinforcement learning. In ICLR. Baker, B., Gupta, O., Naik, N., & Raskar, R. (2017). Designing neural network architectures using reinforcement learning. In ICLR.
Zurück zum Zitat Bi, K., Hu, C., Xie, L., Chen, X., Wei, L., & Tian, Q. (2019). Stabilizing darts with amended gradient estimation on architectural parameters. arXiv:1910.11831. Bi, K., Hu, C., Xie, L., Chen, X., Wei, L., & Tian, Q. (2019). Stabilizing darts with amended gradient estimation on architectural parameters. arXiv:​1910.​11831.
Zurück zum Zitat Cai, H., Chen, T., Zhang, W., Yu, Y., & Wang, J. (2018). Efficient architecture search by network transformation. In AAAI. Cai, H., Chen, T., Zhang, W., Yu, Y., & Wang, J. (2018). Efficient architecture search by network transformation. In AAAI.
Zurück zum Zitat Cai, H., Zhu, L., & Han, S. (2019). ProxylessNAS: Direct neural architecture search on target task and hardware. In ICLR. Cai, H., Zhu, L., & Han, S. (2019). ProxylessNAS: Direct neural architecture search on target task and hardware. In ICLR.
Zurück zum Zitat Chen, X., Xie, L., Wu, J., & Tian, Q. (2019a). Progressive differentiable architecture search: Bridging the depth gap between search and evaluation. In ICCV. Chen, X., Xie, L., Wu, J., & Tian, Q. (2019a). Progressive differentiable architecture search: Bridging the depth gap between search and evaluation. In ICCV.
Zurück zum Zitat Chen, Y., Yang, T., Zhang, X., Meng, G., Xiao, X., & Sun, J. (2019b). Detnas: Backbone search for object detection. In NeurIPS. Chen, Y., Yang, T., Zhang, X., Meng, G., Xiao, X., & Sun, J. (2019b). Detnas: Backbone search for object detection. In NeurIPS.
Zurück zum Zitat Chu, X., Zhang, B., Xu, R., & Li, J. (2019). Fairnas: Rethinking evaluation fairness of weight sharing neural architecture search. arXiv:1907.01845. Chu, X., Zhang, B., Xu, R., & Li, J. (2019). Fairnas: Rethinking evaluation fairness of weight sharing neural architecture search. arXiv:​1907.​01845.
Zurück zum Zitat Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2018). Autoaugment: Learning augmentation policies from data. arXiv:1805.09501. Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2018). Autoaugment: Learning augmentation policies from data. arXiv:​1805.​09501.
Zurück zum Zitat Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In CVPR. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In CVPR.
Zurück zum Zitat Dong, X., & Yang, Y. (2019a). One-shot neural architecture search via self-evaluated template network. In ICCV. Dong, X., & Yang, Y. (2019a). One-shot neural architecture search via self-evaluated template network. In ICCV.
Zurück zum Zitat Dong, X., & Yang, Y. (2019b). Searching for a robust neural architecture in four gpu hours. In CVPR. Dong, X., & Yang, Y. (2019b). Searching for a robust neural architecture in four gpu hours. In CVPR.
Zurück zum Zitat Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. In ICCV. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. In ICCV.
Zurück zum Zitat Ghiasi, G., Lin, T. Y., & Le, Q. V. (2019). Nas-fpn: Learning scalable feature pyramid architecture for object detection. In CVPR. Ghiasi, G., Lin, T. Y., & Le, Q. V. (2019). Nas-fpn: Learning scalable feature pyramid architecture for object detection. In CVPR.
Zurück zum Zitat Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., & He, K. (2017). Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv:1706.02677. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., & He, K. (2017). Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv:​1706.​02677.
Zurück zum Zitat Han, D., Kim, J., & Kim, J. (2017). Deep pyramidal residual networks. In CVPR. Han, D., Kim, J., & Kim, J. (2017). Deep pyramidal residual networks. In CVPR.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR.
Zurück zum Zitat Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al. (2019) Searching for mobilenetv3. In ICCV. Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al. (2019) Searching for mobilenetv3. In ICCV.
Zurück zum Zitat Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:​1704.​04861.
Zurück zum Zitat Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016). Deep networks with stochastic depth. In ECCV, Springer. Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016). Deep networks with stochastic depth. In ECCV, Springer.
Zurück zum Zitat Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In CVPR. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In CVPR.
Zurück zum Zitat Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML.
Zurück zum Zitat Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. Tech. rep., Citeseer. Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. Tech. rep., Citeseer.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In NIPS. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In NIPS.
Zurück zum Zitat Larsson, G., Maire, M., & Shakhnarovich, G. (2017). FractalNet: Ultra-deep neural networks without residuals. In ICLR. Larsson, G., Maire, M., & Shakhnarovich, G. (2017). FractalNet: Ultra-deep neural networks without residuals. In ICLR.
Zurück zum Zitat LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.CrossRef LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.CrossRef
Zurück zum Zitat Li, J., Ma, A. J., & Yuen, P. C. (2018). Semi-supervised region metric learning for person re-identification. IJCV, 126(8), 855–874.CrossRef Li, J., Ma, A. J., & Yuen, P. C. (2018). Semi-supervised region metric learning for person re-identification. IJCV, 126(8), 855–874.CrossRef
Zurück zum Zitat Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In ECCV. Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In ECCV.
Zurück zum Zitat Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In CVPR. Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In CVPR.
Zurück zum Zitat Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L. J., Fei-Fei, L., Yuille, A., Huang, J., & Murphy, K. (2018a). Progressive neural architecture search. In ECCV. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L. J., Fei-Fei, L., Yuille, A., Huang, J., & Murphy, K. (2018a). Progressive neural architecture search. In ECCV.
Zurück zum Zitat Liu, H., Simonyan, K., Vinyals, O., Fernando, C., & Kavukcuoglu, K. (2018b). Hierarchical representations for efficient architecture search. In ICLR. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., & Kavukcuoglu, K. (2018b). Hierarchical representations for efficient architecture search. In ICLR.
Zurück zum Zitat Liu, H., Simonyan, K., & Yang, Y. (2019a). DARTS: Differentiable architecture search. In ICLR. Liu, H., Simonyan, K., & Yang, Y. (2019a). DARTS: Differentiable architecture search. In ICLR.
Zurück zum Zitat Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen, M. (2019b). Deep learning for generic object detection: A survey. In IJCV. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen, M. (2019b). Deep learning for generic object detection: A survey. In IJCV.
Zurück zum Zitat Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. In ECCV. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. In ECCV.
Zurück zum Zitat Ma, N., Zhang, X., Zheng, H. T., & Sun, J. (2018). ShuffleNet V2: Practical guidelines for efficient cnn architecture design. In ECCV. Ma, N., Zhang, X., Zheng, H. T., & Sun, J. (2018). ShuffleNet V2: Practical guidelines for efficient cnn architecture design. In ECCV.
Zurück zum Zitat Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. In NeurIPS. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. In NeurIPS.
Zurück zum Zitat Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., & Dean, J. (2018). Efficient neural architecture search via parameter sharing. In ICML. Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., & Dean, J. (2018). Efficient neural architecture search via parameter sharing. In ICML.
Zurück zum Zitat Quan, R., Dong, X., Wu, Y., Zhu, L., & Yang, Y. (2019). Auto-reid: Searching for a part-aware convnet for person re-identification. In ICCV. Quan, R., Dong, X., Wu, Y., Zhu, L., & Yang, Y. (2019). Auto-reid: Searching for a part-aware convnet for person re-identification. In ICCV.
Zurück zum Zitat Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2018). Regularized evolution for image classifier architecture search. arXiv:1802.01548. Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2018). Regularized evolution for image classifier architecture search. arXiv:​1802.​01548.
Zurück zum Zitat Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). ImageNet large scale visual recognition challenge. IJCV, 115(3), 211–252.MathSciNetCrossRef Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). ImageNet large scale visual recognition challenge. IJCV, 115(3), 211–252.MathSciNetCrossRef
Zurück zum Zitat Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR.
Zurück zum Zitat Shu, Y., Wang, W., & Cai, S. (2020). Understanding architectures learnt by cell-based neural architecture search. In ICLR. Shu, Y., Wang, W., & Cai, S. (2020). Understanding architectures learnt by cell-based neural architecture search. In ICLR.
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In ICLR. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In ICLR.
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15(1), 1929–1958.MathSciNetMATH Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15(1), 1929–1958.MathSciNetMATH
Zurück zum Zitat Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Training very deep networks. In NIPS. Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Training very deep networks. In NIPS.
Zurück zum Zitat Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2), 99–127.CrossRef Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2), 99–127.CrossRef
Zurück zum Zitat Suganuma, M., Shirakawa, S., & Nagao, T. (2017). A genetic programming approach to designing convolutional neural network architectures. In GECCO. Suganuma, M., Shirakawa, S., & Nagao, T. (2017). A genetic programming approach to designing convolutional neural network architectures. In GECCO.
Zurück zum Zitat Sun, Y., Zheng, L., Yang, Y., Tian, Q., & Wang, S. (2018). Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In ECCV. Sun, Y., Zheng, L., Yang, Y., Tian, Q., & Wang, S. (2018). Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In ECCV.
Zurück zum Zitat Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In CVPR. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In CVPR.
Zurück zum Zitat Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In CVPR. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In CVPR.
Zurück zum Zitat Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In ICML. Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In ICML.
Zurück zum Zitat Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., & Le, Q. V. (2019). Mnasnet: Platform-aware neural architecture search for mobile. In CVPR. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., & Le, Q. V. (2019). Mnasnet: Platform-aware neural architecture search for mobile. In CVPR.
Zurück zum Zitat Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In CVPR. Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In CVPR.
Zurück zum Zitat Wang, H., Zhu, X., Gong, S., & Xiang, T. (2018). Person re-identification in identity regression space. IJCV, 126(12), 1288–1310.CrossRef Wang, H., Zhu, X., Gong, S., & Xiang, T. (2018). Person re-identification in identity regression space. IJCV, 126(12), 1288–1310.CrossRef
Zurück zum Zitat Wei, L., Zhang, S., Gao, W., & Tian, Q. (2018). Person transfer gan to bridge domain gap for person re-identification. In CVPR. Wei, L., Zhang, S., Gao, W., & Tian, Q. (2018). Person transfer gan to bridge domain gap for person re-identification. In CVPR.
Zurück zum Zitat Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., & Keutzer, K. (2019). Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search. In CVPR. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., & Keutzer, K. (2019). Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search. In CVPR.
Zurück zum Zitat Xie, L., & Yuille, A. (2017). Genetic CNN. In ICCV. Xie, L., & Yuille, A. (2017). Genetic CNN. In ICCV.
Zurück zum Zitat Xie, S., Kirillov, A., Girshick, R., & He, K. (2019a). Exploring randomly wired neural networks for image recognition. In ICCV. Xie, S., Kirillov, A., Girshick, R., & He, K. (2019a). Exploring randomly wired neural networks for image recognition. In ICCV.
Zurück zum Zitat Xie, S., Zheng, H., Liu, C., & Lin, L. (2019b). SNAS: Stochastic neural architecture search. In ICLR. Xie, S., Zheng, H., Liu, C., & Lin, L. (2019b). SNAS: Stochastic neural architecture search. In ICLR.
Zurück zum Zitat Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G. J., Tian, Q., & Xiong, H. (2020). PC-DARTS: Partial channel connections for memory-efficient architecture search. In ICLR. Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G. J., Tian, Q., & Xiong, H. (2020). PC-DARTS: Partial channel connections for memory-efficient architecture search. In ICLR.
Zurück zum Zitat Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., & Hutter, F. (2020). Understanding and robustifying differentiable architecture search. In ICLR. Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., & Hutter, F. (2020). Understanding and robustifying differentiable architecture search. In ICLR.
Zurück zum Zitat Zhang, X., Zhou, X., Lin, M., Sun, J. (2018). ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In CVPR. Zhang, X., Zhou, X., Lin, M., Sun, J. (2018). ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In CVPR.
Zurück zum Zitat Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q. (2015). Scalable person re-identification: A benchmark. In ICCV. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q. (2015). Scalable person re-identification: A benchmark. In ICCV.
Zurück zum Zitat Zheng, X., Ji, R., Tang, L., Zhang, B., Liu, J., & Tian, Q. (2019). Multinomial distribution learning for effective neural architecture search. In ICCV. Zheng, X., Ji, R., Tang, L., Zhang, B., Liu, J., & Tian, Q. (2019). Multinomial distribution learning for effective neural architecture search. In ICCV.
Zurück zum Zitat Zheng, Z., Zheng, L., & Yang, Y. (2017). Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In ICCV. Zheng, Z., Zheng, L., & Yang, Y. (2017). Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In ICCV.
Zurück zum Zitat Zoph, B., & Le, Q. V. (2017). Neural architecture search with reinforcement learning. In ICLR. Zoph, B., & Le, Q. V. (2017). Neural architecture search with reinforcement learning. In ICLR.
Zurück zum Zitat Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In CVPR. Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In CVPR.
Metadaten
Titel
Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild
verfasst von
Xin Chen
Lingxi Xie
Jun Wu
Qi Tian
Publikationsdatum
03.11.2020
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 3/2021
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-020-01396-x

Weitere Artikel der Ausgabe 3/2021

International Journal of Computer Vision 3/2021 Zur Ausgabe