Skip to main content
Erschienen in: Neural Processing Letters 5/2021

30.06.2021

Progressive Transfer Learning Approach for Identifying the Leaf Type by Optimizing Network Parameters

verfasst von: Deepa Joshi, Vidyanand Mishra, Honey Srivastav, Diksha Goel

Erschienen in: Neural Processing Letters | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There are many plant species with medicinal properties and hence, it becomes very crucial to recognize its relevance. With a range of plant species available for medicinal use, it becomes vital to classify them accurately for their efficient use in medicine. The precise and unerring classification of the plant species is beyond the reach of a common person since it requires thorough knowledge of the subject and manual recognition is tedious and inaccurate due to human error. The advocate solution engages the ReNet50 architecture for automated classification of medicinal leaf prior to the fine-tuning. The initial layers of the pre-trained ResNet50 model are freezed during the first phase of the training while the newly added layers are trained using a differential learning rate obtained by the one-cycle policy. The fine-tuned model from phase I is loaded and trained by unfreezing in the second phase. This process is repeated in such a way that the size of the image is made to increase progressively from 80, 128, 150 to 180 pixels in these two stages of learning. The proposed architecture is validated on four-leaf datasets, which also includes a self-created dataset of leaf images collected from the internet. The publicly available benchmark datasets of leaf images considered for carrying out experiments are Flavia leaf dataset, LeafSnap dataset (lab and field), and MalayaKew (MK) Leaf Dataset (D1 and D2). Several preprocessing techniques; such as identifying mislabeled and irrelevant images from the dataset, data preprocessing, and data balancing are applied before fine-tuning of the model in case of self-collected dataset from the internet. The top-1 accuracy of the Flavia dataset is 100%, whereas MK-D1 and MK-D2 datasets achieved top-1 accuracy of 99.05%, and 99.89% respectively. The Accuracy of the LeafSnap dataset is 97.95% and 99.43% for the field and lab images respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Dileep MR, Pournami PN (2019) Ayurleaf: a deep learning approach for classification of medicinal plants Dileep MR, Pournami PN (2019) Ayurleaf: a deep learning approach for classification of medicinal plants
4.
Zurück zum Zitat Hu J, Chen Z, Yang M, Zhang R, Cui Y (2018) A multiscale fusion convolutional neural network for plant leaf recognition. IEEE Signal Process Lett 25(6):853–857CrossRef Hu J, Chen Z, Yang M, Zhang R, Cui Y (2018) A multiscale fusion convolutional neural network for plant leaf recognition. IEEE Signal Process Lett 25(6):853–857CrossRef
5.
Zurück zum Zitat Wu SG, Bao FS, Xu EY, Wang YX, Chang YF, Xiang QL (2007) A Leaf Recognition Algorithm for Plant Classification using Probabilistic Neural Network. In: 7th IEEE international symposium on signal processing and information technology, Giza, Egypt, pp 11–16 Wu SG, Bao FS, Xu EY, Wang YX, Chang YF, Xiang QL (2007) A Leaf Recognition Algorithm for Plant Classification using Probabilistic Neural Network. In: 7th IEEE international symposium on signal processing and information technology, Giza, Egypt, pp 11–16
6.
Zurück zum Zitat Hossain J, Amin MA (2010) Leaf Shape Identification Based Plant Biometrics. In: 13th international conference on computer and information technology, Dhaka, Bangladesh, pp 458–463 Hossain J, Amin MA (2010) Leaf Shape Identification Based Plant Biometrics. In: 13th international conference on computer and information technology, Dhaka, Bangladesh, pp 458–463
7.
Zurück zum Zitat Zeng W, Li M (2020) Crop leaf disease recognition based on Self-Attention convolutional neural network. Comput Electron Agric 172:105341CrossRef Zeng W, Li M (2020) Crop leaf disease recognition based on Self-Attention convolutional neural network. Comput Electron Agric 172:105341CrossRef
8.
Zurück zum Zitat Le TL, Tran DT, Hoang VN (2014) Fully Automatic leaf-based plant identification, application for Vietnamese medicinal plant search. In: Fifth symposium on information and communication technology, Hanoi, Vietnam, pp 146–154 Le TL, Tran DT, Hoang VN (2014) Fully Automatic leaf-based plant identification, application for Vietnamese medicinal plant search. In: Fifth symposium on information and communication technology, Hanoi, Vietnam, pp 146–154
9.
Zurück zum Zitat Du JX, Zhai CM, Wang QP (2013) Recognition of plant leaf image based on fractal dimension features. Neurocomputing 116:150–156CrossRef Du JX, Zhai CM, Wang QP (2013) Recognition of plant leaf image based on fractal dimension features. Neurocomputing 116:150–156CrossRef
10.
Zurück zum Zitat Lee SH, Chan CS, Wilkin P, Remagnino P (2015) Deep-plant: Plant identification with convolutional neural networks. In: Image Processing (ICIP), 2015 IEEE International Conference on 2015 Sep 27, pp 452–456 Lee SH, Chan CS, Wilkin P, Remagnino P (2015) Deep-plant: Plant identification with convolutional neural networks. In: Image Processing (ICIP), 2015 IEEE International Conference on 2015 Sep 27, pp 452–456
11.
Zurück zum Zitat Lee SH, Chan CS, Mayo SJ, Remagnino P (2017) How deep learning extracts and learns leaf features for plant classification. Pattern Recogn 71:1–13CrossRef Lee SH, Chan CS, Mayo SJ, Remagnino P (2017) How deep learning extracts and learns leaf features for plant classification. Pattern Recogn 71:1–13CrossRef
12.
Zurück zum Zitat Aakif A, Khan MF (2015) Automatic classification of plants based on their leaves. Biosyst Eng 139:66–75CrossRef Aakif A, Khan MF (2015) Automatic classification of plants based on their leaves. Biosyst Eng 139:66–75CrossRef
13.
Zurück zum Zitat Du JX, Wang XF, Zhang GJ (2007) Leaf shape based plant species recognition. Appl Math Comput 185:883–893MATH Du JX, Wang XF, Zhang GJ (2007) Leaf shape based plant species recognition. Appl Math Comput 185:883–893MATH
14.
Zurück zum Zitat Herdiyeni Y, Wahyuni NKS (2012) Mobile Application for Indonesian Medicinal Plants Identification using Fuzzy Local Binary Pattern and Fuzzy Color Histogram. In: international conference on advanced computer science and information systems (ICACSIS), West Java, Indonesia, pp 301–306 Herdiyeni Y, Wahyuni NKS (2012) Mobile Application for Indonesian Medicinal Plants Identification using Fuzzy Local Binary Pattern and Fuzzy Color Histogram. In: international conference on advanced computer science and information systems (ICACSIS), West Java, Indonesia, pp 301–306
16.
Zurück zum Zitat Siravenha ACQ, Carvalho SR (2015) Exploring the use of Leaf Shape Frequencies for Plant Classification. In: 28th SIBGRAPI conference on graphics, patterns and images, Salvador, Brazil, pp 297–304 Siravenha ACQ, Carvalho SR (2015) Exploring the use of Leaf Shape Frequencies for Plant Classification. In: 28th SIBGRAPI conference on graphics, patterns and images, Salvador, Brazil, pp 297–304
17.
Zurück zum Zitat Chaki J, Parekh R, Bhattacharya S (2015) Plant leaf recognition using texture and shape features with neural classifiers. Pattern Recogn Lett 58:61–68CrossRef Chaki J, Parekh R, Bhattacharya S (2015) Plant leaf recognition using texture and shape features with neural classifiers. Pattern Recogn Lett 58:61–68CrossRef
18.
Zurück zum Zitat Tan JW, Chang S, Abdul Kareem SB, Yap HJ, Yong K (2018) Deep learning for plant species classification using leaf vein morphometric. IEEE/ACM Trans Comput Biol Bioinform 17(1):82–90 Tan JW, Chang S, Abdul Kareem SB, Yap HJ, Yong K (2018) Deep learning for plant species classification using leaf vein morphometric. IEEE/ACM Trans Comput Biol Bioinform 17(1):82–90
19.
Zurück zum Zitat Janani R, Gopal A (2013) Identification of selected medicinal plant leaves using image features and ANN. In: 2013 international conference on advanced electronic systems (ICAES), September, pp 238–242 Janani R, Gopal A (2013) Identification of selected medicinal plant leaves using image features and ANN. In: 2013 international conference on advanced electronic systems (ICAES), September, pp 238–242
20.
Zurück zum Zitat Venkataraman D, Mangayarkarasi N (2016) Computer vision-based feature extraction of leaves for identification of medicinal values of plants. In: 2016 IEEE international conference on computational intelligence and computing research (ICCIC), December, pp 1–5 Venkataraman D, Mangayarkarasi N (2016) Computer vision-based feature extraction of leaves for identification of medicinal values of plants. In: 2016 IEEE international conference on computational intelligence and computing research (ICCIC), December, pp 1–5
21.
Zurück zum Zitat Grinblat GL, Uzal LC, Larese MG, Granitto PM (2016) Deep learning for plant identification using vein morphological patterns. Comput Electron Agric 127:418–424CrossRef Grinblat GL, Uzal LC, Larese MG, Granitto PM (2016) Deep learning for plant identification using vein morphological patterns. Comput Electron Agric 127:418–424CrossRef
22.
Zurück zum Zitat Ghazi MM, Yanikoglu B, Aptoula E (2017) Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 235:228–235CrossRef Ghazi MM, Yanikoglu B, Aptoula E (2017) Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 235:228–235CrossRef
23.
Zurück zum Zitat Sabzi S, Pourdarbani R, Arribas JI (2020) A computer vision system for the automatic classification of five varieties of tree leaf images. Computers 9(1):6CrossRef Sabzi S, Pourdarbani R, Arribas JI (2020) A computer vision system for the automatic classification of five varieties of tree leaf images. Computers 9(1):6CrossRef
24.
Zurück zum Zitat Kalyoncu C, Toygar Ö (2015) Geometric leaf classification. Comput Vis Image Underst 133:102–109CrossRef Kalyoncu C, Toygar Ö (2015) Geometric leaf classification. Comput Vis Image Underst 133:102–109CrossRef
25.
Zurück zum Zitat Arribas JI, Sánchez-Ferrero GV, Ruiz-Ruiz G, Gómez-Gil J (2011) Leaf classification in sunflower crops by computer vision and neural networks. Comput Electron Agric 78(1):9–18CrossRef Arribas JI, Sánchez-Ferrero GV, Ruiz-Ruiz G, Gómez-Gil J (2011) Leaf classification in sunflower crops by computer vision and neural networks. Comput Electron Agric 78(1):9–18CrossRef
26.
Zurück zum Zitat Batvia V., Patel D., Dr. Vasant AR (2017) A Survey on Ayurvedic Medicine Classification using Tensor flow. International Journal of Computer Trends and Technology (IJCTT), Published by Seventh Sense Research Group, 2017, November, ISSN: 2231–2803, www.ijcttjoumal.org, V53(2): 68–70, Batvia V., Patel D., Dr. Vasant AR (2017) A Survey on Ayurvedic Medicine Classification using Tensor flow. International Journal of Computer Trends and Technology (IJCTT), Published by Seventh Sense Research Group, 2017, November, ISSN: 2231–2803, www.​ijcttjoumal.​org, V53(2): 68–70,
27.
Zurück zum Zitat Kumar PM, Surya CM, Gopi VP (2017) Identification of ayurvedic medicinal plants by image processing of leaf samples. In: Third international conference on research in computational intelligence and communication networks (ICRCICN), November, pp 231–238 Kumar PM, Surya CM, Gopi VP (2017) Identification of ayurvedic medicinal plants by image processing of leaf samples. In: Third international conference on research in computational intelligence and communication networks (ICRCICN), November, pp 231–238
28.
Zurück zum Zitat Priya CA, Balasaravanan T, Thanamani AS (2012) An efficient leaf recognition algorithm for plant classification using support vector machine. In: Proceedings of international conference on pattern recognition, informatics and medical engineering (PRIME-2012), pp 428–432 Priya CA, Balasaravanan T, Thanamani AS (2012) An efficient leaf recognition algorithm for plant classification using support vector machine. In: Proceedings of international conference on pattern recognition, informatics and medical engineering (PRIME-2012), pp 428–432
29.
Zurück zum Zitat Amlekar MM, Gaikwad AT (2018) Plant classification using image processing and neural network. Data Manag Anal Innov 839:375–384CrossRef Amlekar MM, Gaikwad AT (2018) Plant classification using image processing and neural network. Data Manag Anal Innov 839:375–384CrossRef
30.
Zurück zum Zitat Saleem G, Akhtar M, Ahmed N, Qureshi WS (2019) Automated analysis of visual leaf shape features for plant classification. Comput Electron Agric 157:270–280CrossRef Saleem G, Akhtar M, Ahmed N, Qureshi WS (2019) Automated analysis of visual leaf shape features for plant classification. Comput Electron Agric 157:270–280CrossRef
31.
Zurück zum Zitat Shah MP, Singha S, Awate SP (2017) Leaf classification using marginalized shape context and shape+texture dual-path deep convolutional neural network. In: 2017 IEEE international conference on image processing (ICIP), September, pp 860–864 Shah MP, Singha S, Awate SP (2017) Leaf classification using marginalized shape context and shape+texture dual-path deep convolutional neural network. In: 2017 IEEE international conference on image processing (ICIP), September, pp 860–864
32.
Zurück zum Zitat Bodhwani V, Acharjya DP, Bodhwani U (2019) Deep residual networks for plant identification. Procedia Comput Sci 152:186–194CrossRef Bodhwani V, Acharjya DP, Bodhwani U (2019) Deep residual networks for plant identification. Procedia Comput Sci 152:186–194CrossRef
33.
Zurück zum Zitat Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, September, pp 818–833 Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, September, pp 818–833
35.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
36.
Zurück zum Zitat Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA (2020) Albumentations: fast and flexible image augmentations. Information 11(2):125CrossRef Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA (2020) Albumentations: fast and flexible image augmentations. Information 11(2):125CrossRef
38.
Zurück zum Zitat Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH
39.
Zurück zum Zitat Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef
40.
Zurück zum Zitat Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359CrossRef Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359CrossRef
41.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034 He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034
42.
Zurück zum Zitat Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, March, pp 249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, March, pp 249–256
44.
Zurück zum Zitat Smith LN (2017) Cyclical learning rates for training neural networks. In: IEEE winter conference on applications of computer vision (WACV), March, pp 464–472 Smith LN (2017) Cyclical learning rates for training neural networks. In: IEEE winter conference on applications of computer vision (WACV), March, pp 464–472
47.
Zurück zum Zitat Joshi D, Singh TP (2020) A survey of fracture detection techniques in bone X-ray images. Artif Intell Rev 53(6):4475–4517CrossRef Joshi D, Singh TP (2020) A survey of fracture detection techniques in bone X-ray images. Artif Intell Rev 53(6):4475–4517CrossRef
48.
Zurück zum Zitat Eid HF, Abraham A (2017) Plant species identification using leaf biometrics and swarm optimization: a hybrid PSO, GWO, SVM model. Int J Hybrid Intell Syst 14(3):155–165 Eid HF, Abraham A (2017) Plant species identification using leaf biometrics and swarm optimization: a hybrid PSO, GWO, SVM model. Int J Hybrid Intell Syst 14(3):155–165
49.
Zurück zum Zitat Wang B, Brown D, Gao Y, La Salle J (2015) Multiscale-arch-height description for mobile retrieval of leaf images. Inf Sci 302:132–148CrossRef Wang B, Brown D, Gao Y, La Salle J (2015) Multiscale-arch-height description for mobile retrieval of leaf images. Inf Sci 302:132–148CrossRef
50.
Zurück zum Zitat Pawara P, Okafor E, Surinta O, Schomaker L, Wiering M (2017) comparing local descriptors and bags of visual words to deep convolutional neural networks for plant recognition. ICPRAM 479:486 Pawara P, Okafor E, Surinta O, Schomaker L, Wiering M (2017) comparing local descriptors and bags of visual words to deep convolutional neural networks for plant recognition. ICPRAM 479:486
51.
Zurück zum Zitat Barré P, Stöver BC, Müller KF, Steinhage V (2017) LeafNet: a computer vision system for automatic plant species identification. Ecol Inform 40:50–56CrossRef Barré P, Stöver BC, Müller KF, Steinhage V (2017) LeafNet: a computer vision system for automatic plant species identification. Ecol Inform 40:50–56CrossRef
52.
Zurück zum Zitat Kumar N, Belhumeur PN, Biswas A, Jacobs DW, Kress WJ, Lopez IC, Soares JV (2012) Leafsnap: A computer vision system for automatic plant species identification. In: European conference on computer vision, Springer, Berlin, Heidelberg, 2012, October, pp 502–516. Kumar N, Belhumeur PN, Biswas A, Jacobs DW, Kress WJ, Lopez IC, Soares JV (2012) Leafsnap: A computer vision system for automatic plant species identification. In: European conference on computer vision, Springer, Berlin, Heidelberg, 2012, October, pp 502–516.
Metadaten
Titel
Progressive Transfer Learning Approach for Identifying the Leaf Type by Optimizing Network Parameters
verfasst von
Deepa Joshi
Vidyanand Mishra
Honey Srivastav
Diksha Goel
Publikationsdatum
30.06.2021
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 5/2021
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10521-x

Weitere Artikel der Ausgabe 5/2021

Neural Processing Letters 5/2021 Zur Ausgabe

Neuer Inhalt