Skip to main content
Erschienen in: Foundations of Computational Mathematics 6/2020

28.01.2020

Propagation of One- and Two-Dimensional Discrete Waves Under Finite Difference Approximation

verfasst von: Umberto Biccari, Aurora Marica, Enrique Zuazua

Erschienen in: Foundations of Computational Mathematics | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We analyze the propagation properties of the numerical versions of one- and two-dimensional wave equations, semi-discretized in space by finite difference schemes. We focus on high-frequency solutions whose propagation can be described, both at the continuous and at the semi-discrete levels, by micro-local tools. We consider uniform and non-uniform numerical grids as well as constant and variable coefficients. The energy of continuous and semi-discrete high-frequency solutions propagates along bi-characteristic rays, but their dynamics are different in the continuous and the semi-discrete setting, because of the nature of the corresponding Hamiltonians. One of the main objectives of this paper is to illustrate through accurate numerical simulations that, in agreement with micro-local theory, numerical high-frequency solutions can bend in an unexpected manner, as a result of the accumulation of the local effects introduced by the heterogeneity of the numerical grid. These effects are enhanced in the multi-dimensional case where the interaction and combination of such behaviors in the various space directions may produce, for instance, the rodeo effect, i.e., waves that are trapped by the numerical grid in closed loops, without ever getting to the exterior boundary. Our analysis allows to explain all such pathological behaviors. Moreover, the discussion in this paper also contributes to the existing theory about the necessity of filtering high-frequency numerical components when dealing with control and inversion problems for waves, which is based very much on the theory of rays and, in particular, on the fact that they can be observed when reaching the exterior boundary of the domain, a key property that can be lost through numerical discretization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Allaire. Dispersive limits in the homogenization of the wave equation. Ann. Fac. Sci. Toulouse Math., 12(4):415–431, 2003.MathSciNetMATHCrossRef G. Allaire. Dispersive limits in the homogenization of the wave equation. Ann. Fac. Sci. Toulouse Math., 12(4):415–431, 2003.MathSciNetMATHCrossRef
2.
Zurück zum Zitat G. Allaire and A. Pjatnickiĭ. Homogenization of the Schrödinger equation and effective mass theorems. Commun. Math. Phys., 258(1):1–22, 2005.CrossRef G. Allaire and A. Pjatnickiĭ. Homogenization of the Schrödinger equation and effective mass theorems. Commun. Math. Phys., 258(1):1–22, 2005.CrossRef
3.
Zurück zum Zitat C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim., 30(5):1024–1065, 1992.MathSciNetMATHCrossRef C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim., 30(5):1024–1065, 1992.MathSciNetMATHCrossRef
4.
Zurück zum Zitat L. Baudouin and S. Ervedoza. Convergence of an inverse problem for a 1-D discrete wave equation. SIAM J. Control Optim., 51(1):556–598, 2013.MathSciNetMATHCrossRef L. Baudouin and S. Ervedoza. Convergence of an inverse problem for a 1-D discrete wave equation. SIAM J. Control Optim., 51(1):556–598, 2013.MathSciNetMATHCrossRef
5.
Zurück zum Zitat L. Baudouin, S. Ervedoza, and A. Osses. Stability of an inverse problem for the discrete wave equation and convergence results. J. Math. Pures Appl., 103(6):1475–1522, 2015.MathSciNetMATHCrossRef L. Baudouin, S. Ervedoza, and A. Osses. Stability of an inverse problem for the discrete wave equation and convergence results. J. Math. Pures Appl., 103(6):1475–1522, 2015.MathSciNetMATHCrossRef
6.
Zurück zum Zitat N. Burq and P. Gérard. Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C.R. Acad. Sci. Paris Sér. I, 325(7):749–752, 1997.MathSciNetMATHCrossRef N. Burq and P. Gérard. Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C.R. Acad. Sci. Paris Sér. I, 325(7):749–752, 1997.MathSciNetMATHCrossRef
7.
Zurück zum Zitat N. Burq and J.-M. Schlenker. Contrôle de l’équation des ondes dans des ouverts comportant des coins. Bull. Soc. Math. France, 126(4):601, 1998.MathSciNetMATHCrossRef N. Burq and J.-M. Schlenker. Contrôle de l’équation des ondes dans des ouverts comportant des coins. Bull. Soc. Math. France, 126(4):601, 1998.MathSciNetMATHCrossRef
8.
Zurück zum Zitat C. Castro and S. Micu. Boundary controllability of a linear semi-discrete 1dd wave equation derived from a mixed finite element method. Numer. Math., 102(3):413–462, 2006.MathSciNetMATHCrossRef C. Castro and S. Micu. Boundary controllability of a linear semi-discrete 1dd wave equation derived from a mixed finite element method. Numer. Math., 102(3):413–462, 2006.MathSciNetMATHCrossRef
9.
Zurück zum Zitat C. Castro and E. Zuazua. A remark on the spectral asymptotic analysis in homogenization. C. R. Acad. Sci. Ser. I, 322(11):1043–1047, 1996.MathSciNetMATH C. Castro and E. Zuazua. A remark on the spectral asymptotic analysis in homogenization. C. R. Acad. Sci. Ser. I, 322(11):1043–1047, 1996.MathSciNetMATH
10.
Zurück zum Zitat C. Castro and E. Zuazua. Low frequency asymptotic analysis of a string with rapidly oscillating density. SIAM J. Appl. Math., 60(4):1205–1233, 2000.MathSciNetMATHCrossRef C. Castro and E. Zuazua. Low frequency asymptotic analysis of a string with rapidly oscillating density. SIAM J. Appl. Math., 60(4):1205–1233, 2000.MathSciNetMATHCrossRef
11.
Zurück zum Zitat C. Castro and E. Zuazua. Concentration and lack of observability of waves in highly heterogeneous media. Arch. Rat. Mech. Anal., 164(1):39–72, 2002.MathSciNetMATHCrossRef C. Castro and E. Zuazua. Concentration and lack of observability of waves in highly heterogeneous media. Arch. Rat. Mech. Anal., 164(1):39–72, 2002.MathSciNetMATHCrossRef
12.
Zurück zum Zitat S. Ervedoza. Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes. ESAIM: Control Optim. Calc. Var., 16(2):298–326, 2010.MathSciNetMATH S. Ervedoza. Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes. ESAIM: Control Optim. Calc. Var., 16(2):298–326, 2010.MathSciNetMATH
13.
Zurück zum Zitat S. Ervedoza, A. Marica, and E. Zuazua. Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis. IMA J. Numer. Anal., 36(2):503–542, 2015.MathSciNetMATHCrossRef S. Ervedoza, A. Marica, and E. Zuazua. Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis. IMA J. Numer. Anal., 36(2):503–542, 2015.MathSciNetMATHCrossRef
14.
Zurück zum Zitat S. Ervedoza and E. Zuazua. The wave equation: control and numerics. Control and stabilization of PDEs, P.M. Cannarsa and J.M. Coron eds., Lecture Notes in Mathematics, 2048:245–340, 2012. S. Ervedoza and E. Zuazua. The wave equation: control and numerics. Control and stabilization of PDEs, P.M. Cannarsa and J.M. Coron eds., Lecture Notes in Mathematics, 2048:245–340, 2012.
15.
Zurück zum Zitat S. Ervedoza and E. Zuazua. On the numerical approximation of exact controls for waves. Springer Briefs in Mathematics, , 2013. S. Ervedoza and E. Zuazua. On the numerical approximation of exact controls for waves. Springer Briefs in Mathematics, , 2013.
17.
Zurück zum Zitat R. Glowinski. Ensuring well-posedness by analogy; Stokes problem and boundary control for the wave equation. J. Comput. Phys., 103(2):189–221, 1992.MathSciNetMATHCrossRef R. Glowinski. Ensuring well-posedness by analogy; Stokes problem and boundary control for the wave equation. J. Comput. Phys., 103(2):189–221, 1992.MathSciNetMATHCrossRef
18.
Zurück zum Zitat R. Glowinski and L. Chin-Hsien. On the numerical implementation of the Hilbert uniqueness method for the exact boundary controllability of the wave equation. C. R. Acad. Sc. Sér. 1 Math., 311(2):135–142, 1990.MathSciNetMATH R. Glowinski and L. Chin-Hsien. On the numerical implementation of the Hilbert uniqueness method for the exact boundary controllability of the wave equation. C. R. Acad. Sc. Sér. 1 Math., 311(2):135–142, 1990.MathSciNetMATH
19.
Zurück zum Zitat R. Glowinski, W. Kinton, and M. F. Wheeler. A mixed finite element formulation for the boundary controllability of the wave equation. Internat. J.Numer. Methods Engrg, 27(3):623–635, 1989.MathSciNetMATHCrossRef R. Glowinski, W. Kinton, and M. F. Wheeler. A mixed finite element formulation for the boundary controllability of the wave equation. Internat. J.Numer. Methods Engrg, 27(3):623–635, 1989.MathSciNetMATHCrossRef
20.
Zurück zum Zitat R. Glowinski, C.-H. Li, and J.-L. Lions. A numerical approach to the exact boundary controllability of the wave equation (i) Dirichlet controls: Description of the numerical methods. Japan J. Appl. Math., 7(1):1–76, 1990.MathSciNetMATHCrossRef R. Glowinski, C.-H. Li, and J.-L. Lions. A numerical approach to the exact boundary controllability of the wave equation (i) Dirichlet controls: Description of the numerical methods. Japan J. Appl. Math., 7(1):1–76, 1990.MathSciNetMATHCrossRef
21.
Zurück zum Zitat L. Hormander. The analysis of linear partial differential operators, Vols I, III, 1985. L. Hormander. The analysis of linear partial differential operators, Vols I, III, 1985.
22.
Zurück zum Zitat L. I. Ignat and E. Zuazua. Convergence of a two-grid algorithm for the control of the wave equation. J. Europ. Math. Soc., 11(2):351–391, 2009.MathSciNetMATHCrossRef L. I. Ignat and E. Zuazua. Convergence of a two-grid algorithm for the control of the wave equation. J. Europ. Math. Soc., 11(2):351–391, 2009.MathSciNetMATHCrossRef
23.
Zurück zum Zitat J. A. Infante and E. Zuazua. Boundary observability for the space semi-discretizations of the 1d wave equation. Math. Model. Numer. Anal., 33(2):407–438, 1999.MathSciNetMATHCrossRef J. A. Infante and E. Zuazua. Boundary observability for the space semi-discretizations of the 1d wave equation. Math. Model. Numer. Anal., 33(2):407–438, 1999.MathSciNetMATHCrossRef
25.
Zurück zum Zitat P. Loreti and M. Mehrenberger. An Ingham type proof for a two-grid observability theorem. ESAIM: Control Optim. Calc. Var., 14(3):604–631, 2008.MathSciNetMATH P. Loreti and M. Mehrenberger. An Ingham type proof for a two-grid observability theorem. ESAIM: Control Optim. Calc. Var., 14(3):604–631, 2008.MathSciNetMATH
26.
Zurück zum Zitat F. Macià. Propagación y control de vibraciones en medios discretos y continuos. PhD thesis, Universidad Complutense de Madrid, 2002. F. Macià. Propagación y control de vibraciones en medios discretos y continuos. PhD thesis, Universidad Complutense de Madrid, 2002.
27.
Zurück zum Zitat F. Macía and E. Zuazua. On the lack of observability for wave equations: a gaussian beam approach. Asympt. Anal., 32(1):1–26, 2002.MathSciNetMATH F. Macía and E. Zuazua. On the lack of observability for wave equations: a gaussian beam approach. Asympt. Anal., 32(1):1–26, 2002.MathSciNetMATH
28.
Zurück zum Zitat A. Marica and E. Zuazua. Propagation of 1d waves in regular discrete heterogeneous media: a Wigner measure approach. Found. Comp. Math., 15(6):1571–1636, 2015.MathSciNetMATHCrossRef A. Marica and E. Zuazua. Propagation of 1d waves in regular discrete heterogeneous media: a Wigner measure approach. Found. Comp. Math., 15(6):1571–1636, 2015.MathSciNetMATHCrossRef
29.
Zurück zum Zitat P. Markowich, N. Mauser, and F. Poupaud. A Wigner-function approach to (semi) classical limits: Electrons in a periodic potential. J. Math. Phys., 35(3):1066–1094, 1994.MathSciNetMATHCrossRef P. Markowich, N. Mauser, and F. Poupaud. A Wigner-function approach to (semi) classical limits: Electrons in a periodic potential. J. Math. Phys., 35(3):1066–1094, 1994.MathSciNetMATHCrossRef
30.
31.
Zurück zum Zitat M. Negreanu and E. Zuazua. Convergence of a multigrid method for the controllability of a 1d wave equation. C.R. Acad. Sci. Paris, 338(5):413–418, 2004.MathSciNetMATHCrossRef M. Negreanu and E. Zuazua. Convergence of a multigrid method for the controllability of a 1d wave equation. C.R. Acad. Sci. Paris, 338(5):413–418, 2004.MathSciNetMATHCrossRef
32.
Zurück zum Zitat A. Pjatnickiĭ. On the limit behavior of the domain of dependence of a hyperbolic equation with rapidly oscillating coefficients. Sbornik: Mathematics, 43(1):117–131, 1982.CrossRef A. Pjatnickiĭ. On the limit behavior of the domain of dependence of a hyperbolic equation with rapidly oscillating coefficients. Sbornik: Mathematics, 43(1):117–131, 1982.CrossRef
33.
Zurück zum Zitat J. Ralston. Gaussian beams and the propagation of singularities. Studies in partial differential equations, 23:206–248, 1982.MathSciNetMATH J. Ralston. Gaussian beams and the propagation of singularities. Studies in partial differential equations, 23:206–248, 1982.MathSciNetMATH
34.
Zurück zum Zitat J. Rauch, X. Zhang, and E. Zuazua. Polynomial decay for a hyperbolic-parabolic coupled system. J. Math. Pures Appl., 84(4):407–470, 2005.MathSciNetMATHCrossRef J. Rauch, X. Zhang, and E. Zuazua. Polynomial decay for a hyperbolic-parabolic coupled system. J. Math. Pures Appl., 84(4):407–470, 2005.MathSciNetMATHCrossRef
35.
Zurück zum Zitat L. Tartar. H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sec. A, 115(3-4):193–230, 1990.MathSciNetMATHCrossRef L. Tartar. H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sec. A, 115(3-4):193–230, 1990.MathSciNetMATHCrossRef
37.
Zurück zum Zitat L. N. Trefethen. Wave propagation and stability for finite difference schemes. PhD thesis, Stanford University, 1982. L. N. Trefethen. Wave propagation and stability for finite difference schemes. PhD thesis, Stanford University, 1982.
38.
Zurück zum Zitat R. Vichnevetsky. Propagation properties of semi-discretizations of hyperbolic equations. Math. Comp. Simul., 22(2):98–102, 1980.MATHCrossRef R. Vichnevetsky. Propagation properties of semi-discretizations of hyperbolic equations. Math. Comp. Simul., 22(2):98–102, 1980.MATHCrossRef
39.
Zurück zum Zitat R. Vichnevetsky. Energy and group velocity in semi discretizations of hyperbolic equations. Math. Comp. Simul., 23(4):333–343, 1981.MATHCrossRef R. Vichnevetsky. Energy and group velocity in semi discretizations of hyperbolic equations. Math. Comp. Simul., 23(4):333–343, 1981.MATHCrossRef
40.
Zurück zum Zitat R. Vichnevetsky. Propagation through numerical mesh refinement for hyperbolic equations. Math. Comp. Simul., 23(4):344–353, 1981.MathSciNetMATHCrossRef R. Vichnevetsky. Propagation through numerical mesh refinement for hyperbolic equations. Math. Comp. Simul., 23(4):344–353, 1981.MathSciNetMATHCrossRef
41.
Zurück zum Zitat R. Vichnevetsky. Wave propagation and reflection in irregular grids for hyperbolic equations. Appl. Numer. Math., 3:133–166, 1987.MathSciNetMATHCrossRef R. Vichnevetsky. Wave propagation and reflection in irregular grids for hyperbolic equations. Appl. Numer. Math., 3:133–166, 1987.MathSciNetMATHCrossRef
42.
Zurück zum Zitat R. Vichnevetsky and J. B. Bowles. Fourier analysis of numerical approximations of hyperbolic equations, volume 5. Siam, 1982. R. Vichnevetsky and J. B. Bowles. Fourier analysis of numerical approximations of hyperbolic equations, volume 5. Siam, 1982.
43.
Zurück zum Zitat D. H. Von Seggern. Practical handbook of curve design and generation. CRC Press, 1994. D. H. Von Seggern. Practical handbook of curve design and generation. CRC Press, 1994.
44.
Zurück zum Zitat E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40(5):749, 1932.MATHCrossRef E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40(5):749, 1932.MATHCrossRef
45.
Zurück zum Zitat E. Zuazua. Boundary observability for the finite-difference space semi-discretizations of the 2d wave equation in the square. J. Math. Pures Appl., 78(5):523–563, 1999.MathSciNetMATHCrossRef E. Zuazua. Boundary observability for the finite-difference space semi-discretizations of the 2d wave equation in the square. J. Math. Pures Appl., 78(5):523–563, 1999.MathSciNetMATHCrossRef
46.
Metadaten
Titel
Propagation of One- and Two-Dimensional Discrete Waves Under Finite Difference Approximation
verfasst von
Umberto Biccari
Aurora Marica
Enrique Zuazua
Publikationsdatum
28.01.2020
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 6/2020
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-020-09445-0

Weitere Artikel der Ausgabe 6/2020

Foundations of Computational Mathematics 6/2020 Zur Ausgabe