Skip to main content

01.03.2020

Propagation of Solid-Phase Iron Reduction in a Layer of Ilmenite Concentrate

Erschienen in: Steel in Translation | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Processing of titanium-containing ores together with the extraction of all the major elements is currently an urgent problem for the usage of mineral products. It is shown that none of the existing processing schemes allows the simultaneous extraction of all the major useful elements such as iron, titanium and vanadium from titanium-containing iron ores. This problem can be solved using a selective extraction of these elements based on ideas regarding the electron reduction mechanism. The following has been experimentally studied: the reaction propagation of solid-phase selective iron reduction that is deep in the grain layer of ilmenite concentrate from the surface of its contact with the powder of carbon-containing material. The results are presented for determining the amount of released metal phase depending on the distance from the concentrate–reducing agent contact boundary. Based on the results regarding the amount of the released metal phase, a conclusion was made for the diffusion processes in a layer of concentrate grains that contact only between themselves, thus determining the rate of iron reduction process. It is shown that near the contact surface between the solid reducing agent and the layer of concentrate grains, the rate of iron reduction is higher than the formation rate of the phases with high iron content from ilmenite. Deep in the ilmenite concentrate layer, the process of iron reduction is preceded by the formation of an iron-containing silicate phase from the concentrate grains, where iron is reduced earlier than it is in the ilmenite grains. The formation of iron-containing silicate phase promotes ilmenite grains to be sintered. Thus, upon the concentrate layer contacting with solid reducing agent in the absence of contact between each ilmenite grain and solid reducing agent, the point contact between grains and void presence within the layer do not prevent the reduction process propagation in the grain layer that contact only with each other.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li, K.Q., Ni, W., Zhu, M., Zheng, M.J., and Li, Y., Iron extraction from oolitic iron ore by a deep reduction process, J. Iron Steel Res. Int., 2011, vol. 18, no. 8, pp. 9–13.CrossRef Li, K.Q., Ni, W., Zhu, M., Zheng, M.J., and Li, Y., Iron extraction from oolitic iron ore by a deep reduction process, J. Iron Steel Res. Int., 2011, vol. 18, no. 8, pp. 9–13.CrossRef
2.
Zurück zum Zitat Kapelyushin, Y., Xing, X., Zhang, J., Jeong, S., Sasaki, Y., and Ostrovski, O., Effect of alumina on the gaseous reduction of magnetite in CO/CO2 gas mixtures, Metall. Mater. Trans. B, 2015, vol. 46, no. 3, pp. 1175–1185.CrossRef Kapelyushin, Y., Xing, X., Zhang, J., Jeong, S., Sasaki, Y., and Ostrovski, O., Effect of alumina on the gaseous reduction of magnetite in CO/CO2 gas mixtures, Metall. Mater. Trans. B, 2015, vol. 46, no. 3, pp. 1175–1185.CrossRef
3.
Zurück zum Zitat Anacleto, N.M., Solheim, I., Sorensen, B., Ringdalen, E., and Ostrovski, O., Reduction of chromium oxide and ore by methane-containing gas mixtures, Proc. Int. Ferro-Alloys Congress “INFACON XV,” Cape Town: South. Afr. Inst. Min. Metall., 2018, pp. 71–78. Anacleto, N.M., Solheim, I., Sorensen, B., Ringdalen, E., and Ostrovski, O., Reduction of chromium oxide and ore by methane-containing gas mixtures, Proc. Int. Ferro-Alloys Congress “INFACON XV,” Cape Town: South. Afr. Inst. Min. Metall., 2018, pp. 71–78.
4.
Zurück zum Zitat Leikola, M., Taskinen, P., and Eric, R.H., Reduction of Kemi chromite with methane, J. South. Afr. Inst. Min. Metall., 2018, vol. 118, no. 6, pp. 575–580.CrossRef Leikola, M., Taskinen, P., and Eric, R.H., Reduction of Kemi chromite with methane, J. South. Afr. Inst. Min. Metall., 2018, vol. 118, no. 6, pp. 575–580.CrossRef
5.
Zurück zum Zitat Jung, W.G., Hossain, S.T., Johra, F.T., Kim, J.H., and Chang, Y.C., Reduction of chromium ore by recycled silicon cutting sludge waste with carbon addition, J. Iron Steel Res. Int., 2019, vol. 26, no. 8, pp. 806–817.CrossRef Jung, W.G., Hossain, S.T., Johra, F.T., Kim, J.H., and Chang, Y.C., Reduction of chromium ore by recycled silicon cutting sludge waste with carbon addition, J. Iron Steel Res. Int., 2019, vol. 26, no. 8, pp. 806–817.CrossRef
6.
Zurück zum Zitat Bhalla, A. and Eric, R.H., Mechanism and kinetic modeling of methane-based reduction of Mamatwan manganese ore, Proc. Int. Ferro-Alloys Congress “INFACON XV,” Cape Town: South. Afr. Inst. Min. Metall., 2018, pp. 143–156. Bhalla, A. and Eric, R.H., Mechanism and kinetic modeling of methane-based reduction of Mamatwan manganese ore, Proc. Int. Ferro-Alloys Congress “INFACON XV,” Cape Town: South. Afr. Inst. Min. Metall., 2018, pp. 143–156.
7.
Zurück zum Zitat Cheraghi, A., Yoozbashizadeh, H., and Safarian, J., Chemical, microstructural, and phase changes of manganese ores in calcination and pre-reduction by natural gas, Proc. Int. Ferro-Alloys Congress “INFACON XV,” Cape Town: South. Afr. Inst. Min. Metall., 2018, pp. 157–167. Cheraghi, A., Yoozbashizadeh, H., and Safarian, J., Chemical, microstructural, and phase changes of manganese ores in calcination and pre-reduction by natural gas, Proc. Int. Ferro-Alloys Congress “INFACON XV,” Cape Town: South. Afr. Inst. Min. Metall., 2018, pp. 157–167.
8.
Zurück zum Zitat Huang, R., Lv, X.W., Bai, C.G., Deng, Q.Y., and Ma, S.W., Solid state and smelting reduction of Panzhihua ilmenite concentrate with coke, Can. Metall. Q., 2012, vol. 51, no. 4, pp. 434–439.CrossRef Huang, R., Lv, X.W., Bai, C.G., Deng, Q.Y., and Ma, S.W., Solid state and smelting reduction of Panzhihua ilmenite concentrate with coke, Can. Metall. Q., 2012, vol. 51, no. 4, pp. 434–439.CrossRef
9.
Zurück zum Zitat Gou H.P., Zhang G.H., Hu X.J., and Chou K.C., Kinetic study on carbothermic reduction of ilmenite with activated carbon, Trans. Nonferrous Met. Soc. China, 2017, vol. 27, no. 8, pp. 1856–1861.CrossRef Gou H.P., Zhang G.H., Hu X.J., and Chou K.C., Kinetic study on carbothermic reduction of ilmenite with activated carbon, Trans. Nonferrous Met. Soc. China, 2017, vol. 27, no. 8, pp. 1856–1861.CrossRef
10.
Zurück zum Zitat Sarkar, B.K., Dastidar, M.G., Dey, R., Das, G.C., Chowdhury, S., and Mahata, D.K., Optimization of reduction parameters of quenched titaniferous magnetite ore by boiler grade coal using box-behnken design, J. Inst. Eng. (India):Ser. D, 2019, vol. 100, pp. 275–282. Sarkar, B.K., Dastidar, M.G., Dey, R., Das, G.C., Chowdhury, S., and Mahata, D.K., Optimization of reduction parameters of quenched titaniferous magnetite ore by boiler grade coal using box-behnken design, J. Inst. Eng. (India):Ser. D, 2019, vol. 100, pp. 275–282.
11.
Zurück zum Zitat Wang, S., Chen, M., Guo, Y., Jiang, T., and Zhao, B., Reduction and smelting of vanadium titanomagnetite metallized pellets, JOM, 2018, vol. 71, no. 3, pp. 1144–1149.CrossRef Wang, S., Chen, M., Guo, Y., Jiang, T., and Zhao, B., Reduction and smelting of vanadium titanomagnetite metallized pellets, JOM, 2018, vol. 71, no. 3, pp. 1144–1149.CrossRef
12.
Zurück zum Zitat Gudima, N.V. and Shein, Ya.P., Kratkii spravochnik po metallurgii tsvetnykh metallov (Outline of Non-Ferrous Metallurgy), Moscow: Metallurgiya, 1975. Gudima, N.V. and Shein, Ya.P., Kratkii spravochnik po metallurgii tsvetnykh metallov (Outline of Non-Ferrous Metallurgy), Moscow: Metallurgiya, 1975.
13.
Zurück zum Zitat Utkin, N.I., Proizvodstvo tsvetnykh metallov (Non-Ferrous Metals Production), Moscow: Intermet Inzhiniring, 2004. Utkin, N.I., Proizvodstvo tsvetnykh metallov (Non-Ferrous Metals Production), Moscow: Intermet Inzhiniring, 2004.
14.
Zurück zum Zitat Fu, W., Wen, Y., and Xie, H., Development of intensified technologies of vanadium-bearing titanomagnetite smelting, J. Iron Steel Res. Int., 2011, vol. 18, no. 4, pp. 7–18.CrossRef Fu, W., Wen, Y., and Xie, H., Development of intensified technologies of vanadium-bearing titanomagnetite smelting, J. Iron Steel Res. Int., 2011, vol. 18, no. 4, pp. 7–18.CrossRef
15.
Zurück zum Zitat Panishev, N.V. and Bigeev, V.A., Processing of complex ores of the Southern Urals by deep metallization, Teor. Tekhnol. Metall. Proizvod., 2016, no. 2 (19), pp. 68–70. Panishev, N.V. and Bigeev, V.A., Processing of complex ores of the Southern Urals by deep metallization, Teor. Tekhnol. Metall. Proizvod., 2016, no. 2 (19), pp. 68–70.
16.
Zurück zum Zitat Wang, S., Guo, Y., Jiang, T., Chen, F., Zheng, F., Yang, L., and Tang, M., Behavior of titanium during the smelting of vanadium titanomagnetite metallized pellets in an electric furnace, JOM, 2019, vol. 71, no. 1, pp. 323–328.CrossRef Wang, S., Guo, Y., Jiang, T., Chen, F., Zheng, F., Yang, L., and Tang, M., Behavior of titanium during the smelting of vanadium titanomagnetite metallized pellets in an electric furnace, JOM, 2019, vol. 71, no. 1, pp. 323–328.CrossRef
17.
Zurück zum Zitat Leont’ev, L.I., Vatolin, N.A., Shavrin, S.V., and Shumakov, N.S., Pirometallurgicheskaya pererabotka kompleksnykh rud (Pyrometallurgical Processing of Complex Ores), Moscow: Metallurgiya, 1997. Leont’ev, L.I., Vatolin, N.A., Shavrin, S.V., and Shumakov, N.S., Pirometallurgicheskaya pererabotka kompleksnykh rud (Pyrometallurgical Processing of Complex Ores), Moscow: Metallurgiya, 1997.
18.
Zurück zum Zitat Roshchin, V.E., Asanov, A.V., and Roshchin, A.V., Possibilities of two-stage processing of titaniferous magnetite ore concentrates, Russ. Metall. (Engl. Transl.), 2011, vol. 2011, no. 6, pp. 499–508. Roshchin, V.E., Asanov, A.V., and Roshchin, A.V., Possibilities of two-stage processing of titaniferous magnetite ore concentrates, Russ. Metall. (Engl. Transl.), 2011, vol. 2011, no. 6, pp. 499–508.
19.
Zurück zum Zitat Roshchin, V.E., Gamov, P.A., Roshchin, A.V., and Salikhov, S.P., The electronic theory of reduction and the extraction of metals from ore, Steel Transl., 2019, vol. 49, no. 5, pp. 319–327.CrossRef Roshchin, V.E., Gamov, P.A., Roshchin, A.V., and Salikhov, S.P., The electronic theory of reduction and the extraction of metals from ore, Steel Transl., 2019, vol. 49, no. 5, pp. 319–327.CrossRef
20.
Zurück zum Zitat Roshchin, V.E. and Roshchin, A.V., Electron mechanism of reduction processes in blast and ferroalloy furnaces, CIS Iron Steel Rev., 2019, vol. 17, pp. 14–24.CrossRef Roshchin, V.E. and Roshchin, A.V., Electron mechanism of reduction processes in blast and ferroalloy furnaces, CIS Iron Steel Rev., 2019, vol. 17, pp. 14–24.CrossRef
21.
Zurück zum Zitat Roshchin, V.E., Roshchin, A.V., Gamov, P.A., and Bil’genov, A.S., Electron and mass transfer during solid carbon reduction of metals in solid complex oxides, Russ. Metall. (Engl. Transl.), 2020, vol. 2020, no. 1, pp. 50–59. Roshchin, V.E., Roshchin, A.V., Gamov, P.A., and Bil’genov, A.S., Electron and mass transfer during solid carbon reduction of metals in solid complex oxides, Russ. Metall. (Engl. Transl.), 2020, vol. 2020, no. 1, pp. 50–59.
22.
Zurück zum Zitat Roshchin, V.E. and Roshchin, A.V., Electronic processes at reduction and extraction of metals from ores, Elektrometallurgiya, 2020, no. 1, pp. 14–24. Roshchin, V.E. and Roshchin, A.V., Electronic processes at reduction and extraction of metals from ores, Elektrometallurgiya, 2020, no. 1, pp. 14–24.
Metadaten
Titel
Propagation of Solid-Phase Iron Reduction in a Layer of Ilmenite Concentrate
Publikationsdatum
01.03.2020
Erschienen in
Steel in Translation / Ausgabe 3/2020
Print ISSN: 0967-0912
Elektronische ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091220030092

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.