Skip to main content

2018 | OriginalPaper | Buchkapitel

Properties and Behavior of Shape Memory Alloys in the Scope of Biomedical and Engineering Applications

verfasst von : Vladimir Dunić, Radovan Slavković, Elzbieta A. Pieczyska

Erschienen in: Biomaterials in Clinical Practice

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shape memory alloys (SMA) are widely and frequently applied in cases when it is useful to employ their advantages through specific behavior (pseudoelasticity or shape memory effect) in various conditions. Effects of shape memory and pseudoelasticity can be employed in innovative ways as actuating or sensing elements in many nowadays applications. There are various alloying elements which can form a SMA such as Ni, Ti, Cr, Cu, etc., but the most frequently used and known alloy is NiTi. By addition of other alloying elements the properties of the SMA can be changed to fit demands of the consumers. The investigation of such materials is very important for successful application, so the researchers investigate procedures and algorithms for comparison of experimental and numerical results to provide the best performance of SMA devices. Strong thermomechanical coupling is observed during the SMA loading, so SMA are known as highly thermosensitive materials what can be used as advantage, but also it can be a problem during the alloy production process. The strong thermomechanical coupling and the related high thermosensitivity increase the need for simulation of complex thermomechanical response in realistic problems. The complex stress states and deformation range impose the requirements for accurate analysis of large strain problems. Application of SMA started several decades ago with an engineering application in pipe couplings, while today one of the most commonly known are biomedical applications (i.e. cardiovascular stents and orthodontic braces). The main reasons for wide range of biomedical applications of NiTi alloys are the specific behavior, good biocompatibility and good fatigue performance what is important factor under the high cyclic external loading.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arghavani J (2010) Thermo-mechanical behavior of shape memory alloys under multiaxial loadings: constitutive modeling and numerical implementation at small and finite strains. PhD thesis, Sharif University of Technology, Tehran, Iran Arghavani J (2010) Thermo-mechanical behavior of shape memory alloys under multiaxial loadings: constitutive modeling and numerical implementation at small and finite strains. PhD thesis, Sharif University of Technology, Tehran, Iran
Zurück zum Zitat Auricchio F, Petrini L (2002) Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations. Int J Numer Meth Eng 55(11):1255–1284. doi:10.1002/nme.619 Auricchio F, Petrini L (2002) Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations. Int J Numer Meth Eng 55(11):1255–1284. doi:10.​1002/​nme.​619
Zurück zum Zitat Auricchio F, Petrini L (2004a) A three-dimensional model describing stress-temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications. Int J Numer Meth Eng 61(5):716–737. doi:10.1002/nme.1087 CrossRefMATH Auricchio F, Petrini L (2004a) A three-dimensional model describing stress-temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications. Int J Numer Meth Eng 61(5):716–737. doi:10.​1002/​nme.​1087 CrossRefMATH
Zurück zum Zitat Auricchio F, Petrini L (2004b) A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Meth Eng 61(6):807–836. doi:10.1002/nme.1086 CrossRefMATHMathSciNet Auricchio F, Petrini L (2004b) A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Meth Eng 61(6):807–836. doi:10.​1002/​nme.​1086 CrossRefMATHMathSciNet
Zurück zum Zitat Auricchio F, Boatti E, Conti M (2015a) Chapter 11—SMA biomedical applications. In: Lecce L, Concilio A (eds) Shape memory alloy engineering. Butterworth-Heinemann, Boston, pp 307–341. doi:10.1016/B978-0-08-099920-3.00011-5 Auricchio F, Boatti E, Conti M (2015a) Chapter 11—SMA biomedical applications. In: Lecce L, Concilio A (eds) Shape memory alloy engineering. Butterworth-Heinemann, Boston, pp 307–341. doi:10.​1016/​B978-0-08-099920-3.​00011-5
Zurück zum Zitat Auricchio F, Boatti E, Conti M (2015b) Chapter 12—SMA cardiovascular applications and computer-based design. In: Concilio A, Lecce L (eds) Shape memory alloy engineering. Butterworth-Heinemann, Boston, pp 343–367. doi:10.1016/B978-0-08-099920-3.00012-7 Auricchio F, Boatti E, Conti M (2015b) Chapter 12—SMA cardiovascular applications and computer-based design. In: Concilio A, Lecce L (eds) Shape memory alloy engineering. Butterworth-Heinemann, Boston, pp 343–367. doi:10.​1016/​B978-0-08-099920-3.​00012-7
Zurück zum Zitat Boyd J, Lagoudas D (1996) A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int J Plasticity 12(6):805–842. doi:10.1016/S0749-6419(96)00030-7 Boyd J, Lagoudas D (1996) A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int J Plasticity 12(6):805–842. doi:10.​1016/​S0749-6419(96)00030-7
Zurück zum Zitat Buehler W, Gilfrich J, Wiley R (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477CrossRef Buehler W, Gilfrich J, Wiley R (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477CrossRef
Zurück zum Zitat Duering T, Melton K, Stockel D, Wayman C (eds) (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, London Duering T, Melton K, Stockel D, Wayman C (eds) (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, London
Zurück zum Zitat Dunić V, Pieczyska E, Tobushi H, Staszczak M, Slavković R (2014) Experimental and numerical thermo-mechanical analysis of shape memory alloy subjected to tension with various stress and strain rates. Smart Mater Struct 23(5):055026. doi:10.1088/0964-1726/23/5/055026 Dunić V, Pieczyska E, Tobushi H, Staszczak M, Slavković R (2014) Experimental and numerical thermo-mechanical analysis of shape memory alloy subjected to tension with various stress and strain rates. Smart Mater Struct 23(5):055026. doi:10.​1088/​0964-1726/​23/​5/​055026
Zurück zum Zitat Grabe C (2007) Experimental testing and parameter identification on the multidimensional material behavior of shape memory alloys. PhD thesis, Institut für Mechanik, Ruhr-Universität Bochum, Germany Grabe C (2007) Experimental testing and parameter identification on the multidimensional material behavior of shape memory alloys. PhD thesis, Institut für Mechanik, Ruhr-Universität Bochum, Germany
Zurück zum Zitat Grandi D, Maraldi M, Molari L (2012) A macroscale phase-field model for shape memory alloys with non-isothermal effects: Influence of strain rate and environmental conditions on the mechanical response. Acta Mater 60(1):179–191. doi:10.1016/j.actamat.2011.09.040 CrossRef Grandi D, Maraldi M, Molari L (2012) A macroscale phase-field model for shape memory alloys with non-isothermal effects: Influence of strain rate and environmental conditions on the mechanical response. Acta Mater 60(1):179–191. doi:10.​1016/​j.​actamat.​2011.​09.​040 CrossRef
Zurück zum Zitat Jovanović M, Lazić V, Adamović D, Ratković N (2003) Mašinski materijali. Univerzitet u Kragujevcu, Mašinski fakultet u Kragujevcu Jovanović M, Lazić V, Adamović D, Ratković N (2003) Mašinski materijali. Univerzitet u Kragujevcu, Mašinski fakultet u Kragujevcu
Zurück zum Zitat Lagoudas D (2010) Shape memory alloys: modeling and engineering applications. Springer, Berlin Lagoudas D (2010) Shape memory alloys: modeling and engineering applications. Springer, Berlin
Zurück zum Zitat Lexcellent C, Vivet A, Bouvet C, Calloch S, Blanc P (2002) Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys. J Mech Phys Solids 50(12):2717–2735. doi:10.1016/S0022-5096(02)00007-8 CrossRefMATH Lexcellent C, Vivet A, Bouvet C, Calloch S, Blanc P (2002) Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys. J Mech Phys Solids 50(12):2717–2735. doi:10.​1016/​S0022-5096(02)00007-8 CrossRefMATH
Zurück zum Zitat Menna C, Auricchio F, Asprone D (2015) Chapter 13—Applications of shape memory alloys in structural engineering. In: Concilio LL (ed) Shape memory alloy engineering. Butterworth-Heinemann, Boston, pp 369–403. doi:10.1016/B978-0-08-099920-3.00013-9 Menna C, Auricchio F, Asprone D (2015) Chapter 13—Applications of shape memory alloys in structural engineering. In: Concilio LL (ed) Shape memory alloy engineering. Butterworth-Heinemann, Boston, pp 369–403. doi:10.​1016/​B978-0-08-099920-3.​00013-9
Zurück zum Zitat Otsuka K, Wayman C (eds) (1998) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman C (eds) (1998) Shape memory materials. Cambridge University Press, Cambridge
Zurück zum Zitat Pieczyska E (2008) Analiza doświadczalna wlaściwości termomechanicznych stopów TiNi oraz poliuretanu z pamiecia ksztaltu (Experimental analysis of thermomechanical properties of TiNi shape memory alloys and shape memory polyurethane). Prace IPPT-IFTR Reports, Institute of Fundamental Technologica Research of the Polish Academy of Sciences, in Polish, graphs in English, Habilitation thesis Pieczyska E (2008) Analiza doświadczalna wlaściwości termomechanicznych stopów TiNi oraz poliuretanu z pamiecia ksztaltu (Experimental analysis of thermomechanical properties of TiNi shape memory alloys and shape memory polyurethane). Prace IPPT-IFTR Reports, Institute of Fundamental Technologica Research of the Polish Academy of Sciences, in Polish, graphs in English, Habilitation thesis
Zurück zum Zitat Pieczyska E (2012) Experimental investigation of stress-induced martensite transformation activity in shape memory alloy. Report grant No NN501 2208 37, Institute of Fundamental Technological Research of the Polish Academy of Sciences Pieczyska E (2012) Experimental investigation of stress-induced martensite transformation activity in shape memory alloy. Report grant No NN501 2208 37, Institute of Fundamental Technological Research of the Polish Academy of Sciences
Zurück zum Zitat Pieczyska E (2015) Mechanical behavior and infrared imaging of ferromagnetic NiFeGaCo SMA single crystal subjected to subsequent compression cycles. Meccanica 50(2):585–590. doi:10.1007/s11012-013-9868-7 CrossRef Pieczyska E (2015) Mechanical behavior and infrared imaging of ferromagnetic NiFeGaCo SMA single crystal subjected to subsequent compression cycles. Meccanica 50(2):585–590. doi:10.​1007/​s11012-013-9868-7 CrossRef
Zurück zum Zitat Pieczyska E, Gadaj S, Nowacki W, Tobushi H (2006) Phase–transformation fronts evolution for stress- and strain-controlled tension tests in TiNi shape memory alloy. Exp Mech 46(4):531–542. doi:10.1007/s11340-006-8351-y CrossRef Pieczyska E, Gadaj S, Nowacki W, Tobushi H (2006) Phase–transformation fronts evolution for stress- and strain-controlled tension tests in TiNi shape memory alloy. Exp Mech 46(4):531–542. doi:10.​1007/​s11340-006-8351-y CrossRef
Zurück zum Zitat Pieczyska E, Dutkiewicz J, Masdeu F, Luckner J, Maciak R (2011) Investigation of thermomechanical properties of ferromagnetic NiFeGa shape memory alloy subjected to pseudoelastic compression test. Arch Metall Mater 56(2):401–408. doi:10.2478/v10172-011-0043-7 CrossRef Pieczyska E, Dutkiewicz J, Masdeu F, Luckner J, Maciak R (2011) Investigation of thermomechanical properties of ferromagnetic NiFeGa shape memory alloy subjected to pseudoelastic compression test. Arch Metall Mater 56(2):401–408. doi:10.​2478/​v10172-011-0043-7 CrossRef
Zurück zum Zitat Pieczyska E, Tobushi H, Kulasinski K (2013) Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera. Smart Mater Struct 22(3):035007. doi:10.1088/0964-1726/22/3/035007 Pieczyska E, Tobushi H, Kulasinski K (2013) Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera. Smart Mater Struct 22(3):035007. doi:10.​1088/​0964-1726/​22/​3/​035007
Zurück zum Zitat Pieczyska E, Staszczak M, Dunić V, Slavković R, Tobushi H, Takeda K (2014) Development of stress-induced martensitic transformation in TiNi shape memory alloy. J Mater Eng Perform 23(7):2505–2514. doi:10.1007/s11665-014-0959-y Pieczyska E, Staszczak M, Dunić V, Slavković R, Tobushi H, Takeda K (2014) Development of stress-induced martensitic transformation in TiNi shape memory alloy. J Mater Eng Perform 23(7):2505–2514. doi:10.​1007/​s11665-014-0959-y
Zurück zum Zitat Popov P, Lagoudas D (2007) A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite. Int J Plasticity 23(10–11):1679–1720. doi:10.1016/j.ijplas.2007.03.011 (in honor of Professor Dusan Krajcinovic) Popov P, Lagoudas D (2007) A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite. Int J Plasticity 23(10–11):1679–1720. doi:10.​1016/​j.​ijplas.​2007.​03.​011 (in honor of Professor Dusan Krajcinovic)
Zurück zum Zitat Qidwai M, Lagoudas D (2000a) Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms. Int J Numer Meth Eng 47(6):1123–1168CrossRefMATH Qidwai M, Lagoudas D (2000a) Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms. Int J Numer Meth Eng 47(6):1123–1168CrossRefMATH
Zurück zum Zitat Raniecki B, Lexcellent C (1994) RL-models of pseudoelasticity and their specification for some shape memory solids. Eur J Mech A Solid 13(1):21–50MATH Raniecki B, Lexcellent C (1994) RL-models of pseudoelasticity and their specification for some shape memory solids. Eur J Mech A Solid 13(1):21–50MATH
Zurück zum Zitat Tobushi H, Matsui R, Takeda K, Pieczyska E (2013) Mechanical properties of shape memory materials. Materials science and technologies, mechanical engineering theory and applications. NOVA Publishers, New York Tobushi H, Matsui R, Takeda K, Pieczyska E (2013) Mechanical properties of shape memory materials. Materials science and technologies, mechanical engineering theory and applications. NOVA Publishers, New York
Metadaten
Titel
Properties and Behavior of Shape Memory Alloys in the Scope of Biomedical and Engineering Applications
verfasst von
Vladimir Dunić
Radovan Slavković
Elzbieta A. Pieczyska
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-68025-5_11

Neuer Inhalt