Skip to main content
Erschienen in: Journal of Polymer Research 4/2019

01.04.2019 | ORIGINAL PAPER

Properties and characterization of near infrared-triggered natural rubber (NR)/carnauba wax (CW)/carbon nanotube (CNT) shape memory bio-nanocomposites

verfasst von: Sun-Mou Lai, Geng-Lun Guo, Kuan-Ting Han, Po-Sung Huang, Zhen-Lin Huang, Ming-Jun Jiang, Ya-Ru Zou

Erschienen in: Journal of Polymer Research | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Very few studies have investigated on the blending of small molecules in the commercial biobased polymers with shape memory behavior. Herein, we investigated the shape memory properties of natural rubber and carnauba wax (S-NR/CW = 8:2, 6:4 and 5:5) melt-blends and nanocomposites vulcanized with sulfur/accelerators, using the melting temperature of wax as the switching temperature. With the addition of multi-walled carbon nanotube (CNT), the prepared S-NR/CW-CNT nanocomposites can not only enhance the mechanical properties but also enhance the shape fixity ratios, attributing to the unexpected improved dispersion of CW and the increased crystallinity of CW. In the one-way test, the shape fixity and recovery ratios for S-NR/CW/CNT 5:5 nanocomposites could reach up to 99.6% and 97.3% in the third thermomechanical cycle, respectively. In addition, CNT could be selectively and remotely heated by irradiation with near infrared laser to trigger shape memory process in a very short time. The additional paraffin wax was also blended with carnauba wax to form the wax mixture for preparing multi-shape memory behavior to exploit the various types of waxes with different melting temperatures (supplementary file). To the best of our knowledge, this is the first small molecule-filled NR nanocomposites with remotely-triggered shape memory properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past. present and future developments Prog Polym Sci 49(50):3–33CrossRef Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past. present and future developments Prog Polym Sci 49(50):3–33CrossRef
2.
Zurück zum Zitat Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43(1):254–269CrossRef Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43(1):254–269CrossRef
3.
Zurück zum Zitat Pilate F, Toncheva A, Dubois P, Raquez J-M (2016) Shape-memory polymers for multiple applications in the materials world. Eur Polym J 80:268–294CrossRef Pilate F, Toncheva A, Dubois P, Raquez J-M (2016) Shape-memory polymers for multiple applications in the materials world. Eur Polym J 80:268–294CrossRef
4.
Zurück zum Zitat Mu T, Liu L, Lan X, Liu Y, Leng J (2018) Shape memory polymers for composites. Compos Sci Technol 160:169–198CrossRef Mu T, Liu L, Lan X, Liu Y, Leng J (2018) Shape memory polymers for composites. Compos Sci Technol 160:169–198CrossRef
5.
Zurück zum Zitat Thomsen DL, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna BR (2001) Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34(17):5868–5875CrossRef Thomsen DL, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna BR (2001) Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34(17):5868–5875CrossRef
6.
Zurück zum Zitat Chung T, Rorno U-A, Mather PT (2008) Two-way reversible shape memory in a semicrystalline network. Macromolecules 41(1):184–192CrossRef Chung T, Rorno U-A, Mather PT (2008) Two-way reversible shape memory in a semicrystalline network. Macromolecules 41(1):184–192CrossRef
7.
Zurück zum Zitat Zotzmann J, Behl M, Hofmann D, Lendlein A (2010) Reversible triple-shape effect of polymer networks containing polypentadecalactone-and poly(ε-caprolactone)-segments. Adv Mater 22(31):3424–3429CrossRef Zotzmann J, Behl M, Hofmann D, Lendlein A (2010) Reversible triple-shape effect of polymer networks containing polypentadecalactone-and poly(ε-caprolactone)-segments. Adv Mater 22(31):3424–3429CrossRef
8.
Zurück zum Zitat Wu Y, Hu J, Han J, Zhu Y, Huang H, Li J, Tang B (2014) Two-way shape memory polymer with "switch-spring" composition by interpenetrating polymer network. J Mater Chem A 2(44):18816–18822CrossRef Wu Y, Hu J, Han J, Zhu Y, Huang H, Li J, Tang B (2014) Two-way shape memory polymer with "switch-spring" composition by interpenetrating polymer network. J Mater Chem A 2(44):18816–18822CrossRef
9.
Zurück zum Zitat Pandini S, Baldi F, Paderni K, Messori M, Toselli M, Pilati F, Gianoncelli A, Brisotto M, Bontempi E, Riccò T (2013) One-way and two-way shape memory behaviour of semi-crystalline networks based on sol–gel cross-linked poly(ε-caprolactone). Polymer 54(16):4253–4265CrossRef Pandini S, Baldi F, Paderni K, Messori M, Toselli M, Pilati F, Gianoncelli A, Brisotto M, Bontempi E, Riccò T (2013) One-way and two-way shape memory behaviour of semi-crystalline networks based on sol–gel cross-linked poly(ε-caprolactone). Polymer 54(16):4253–4265CrossRef
10.
Zurück zum Zitat Hou G, Wang F, Qu Z, Cheng Z, Zhang Y, Cai S, Xie T, Feng X (2018) Reversible semicrystalline polymer as actuators driven by organic solvent vapor. Macromol Rapid Commun 39(7):1700716CrossRef Hou G, Wang F, Qu Z, Cheng Z, Zhang Y, Cai S, Xie T, Feng X (2018) Reversible semicrystalline polymer as actuators driven by organic solvent vapor. Macromol Rapid Commun 39(7):1700716CrossRef
11.
Zurück zum Zitat Kumar NU, Kratz K, Behl M, Lendlein A (2012) Shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments. Express Polym Lett 6(1):26–40CrossRef Kumar NU, Kratz K, Behl M, Lendlein A (2012) Shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments. Express Polym Lett 6(1):26–40CrossRef
12.
Zurück zum Zitat Bodaghi M, Damanpack AR, Liao WH (2018) Triple shape memory polymers by 4D printing. Smart Mater Struct 27(6):065010CrossRef Bodaghi M, Damanpack AR, Liao WH (2018) Triple shape memory polymers by 4D printing. Smart Mater Struct 27(6):065010CrossRef
13.
Zurück zum Zitat Lai S-M, You P-Y, Chiu YT, Kuo CW (2017) Triple-shape memory properties of thermoplastic polyurethane/olefin block copolymer/polycaprolactone blends. J Polym Res 24:161 Lai S-M, You P-Y, Chiu YT, Kuo CW (2017) Triple-shape memory properties of thermoplastic polyurethane/olefin block copolymer/polycaprolactone blends. J Polym Res 24:161
14.
Zurück zum Zitat Cavicchi KA (2015) Shape memory polymers from blends of elastomers and small molecule additives. Macromol Symp 358(1):194–201CrossRef Cavicchi KA (2015) Shape memory polymers from blends of elastomers and small molecule additives. Macromol Symp 358(1):194–201CrossRef
15.
Zurück zum Zitat Kolesov I, Dolynchuk O, Radusch H-J (2015) Shape-memory behavior of cross-linked semi-crystalline polymers and their blends. Express Polym Lett 9(3):255–276CrossRef Kolesov I, Dolynchuk O, Radusch H-J (2015) Shape-memory behavior of cross-linked semi-crystalline polymers and their blends. Express Polym Lett 9(3):255–276CrossRef
16.
Zurück zum Zitat Han J-L, Lai S-M, Chiu YT (2018) Two-way multi-shape memory properties of peroxide crosslinked ethylene vinyl-acetate copolymer (EVA)/polycaprolactone (PCL) blends. Polym Adv Technol 29(7):2010–2024CrossRef Han J-L, Lai S-M, Chiu YT (2018) Two-way multi-shape memory properties of peroxide crosslinked ethylene vinyl-acetate copolymer (EVA)/polycaprolactone (PCL) blends. Polym Adv Technol 29(7):2010–2024CrossRef
17.
Zurück zum Zitat Wu X, Huang WM, Zhao Y, Ding Z, Tang C, Zhang J (2013) Mechanisms of the shape memory effect in polymeric materials. Polymers 5(4):1169–1202CrossRef Wu X, Huang WM, Zhao Y, Ding Z, Tang C, Zhang J (2013) Mechanisms of the shape memory effect in polymeric materials. Polymers 5(4):1169–1202CrossRef
18.
Zurück zum Zitat Song S, Feng J, Wu P (2011) A new strategy to prepare polymer-based shape memory elastomers. Macromol Rapid Commun 32(19):1569–1575CrossRef Song S, Feng J, Wu P (2011) A new strategy to prepare polymer-based shape memory elastomers. Macromol Rapid Commun 32(19):1569–1575CrossRef
19.
Zurück zum Zitat Li G, Zhang H, Fortin D, Fan W, Xia H, Zhao Y (2016) A composite material with room temperature shape process ability and optical repair. J Mater Chem C 4(25):5932–5939CrossRef Li G, Zhang H, Fortin D, Fan W, Xia H, Zhao Y (2016) A composite material with room temperature shape process ability and optical repair. J Mater Chem C 4(25):5932–5939CrossRef
20.
Zurück zum Zitat Zhang Q, Feng J (2013) Difunctional olefin block copolymer/paraffin form-stable phase change materials with simultaneous shape memory property. Sol Energ Mat Sol Cells 117:259–266CrossRef Zhang Q, Feng J (2013) Difunctional olefin block copolymer/paraffin form-stable phase change materials with simultaneous shape memory property. Sol Energ Mat Sol Cells 117:259–266CrossRef
21.
Zurück zum Zitat Zhang Q, Hua W, Feng J (2016) A facile strategy to fabricate multishape memory polymers with controllable mechanical properties. Macro Rapid Commun 37(15):1262–1267CrossRef Zhang Q, Hua W, Feng J (2016) A facile strategy to fabricate multishape memory polymers with controllable mechanical properties. Macro Rapid Commun 37(15):1262–1267CrossRef
22.
Zurück zum Zitat Zhang Q, Song S, Feng J, Wu P (2012) A new strategy to prepare polymer composites with versatile shape memory properties. J Mater Chem 22(47):24776–24782CrossRef Zhang Q, Song S, Feng J, Wu P (2012) A new strategy to prepare polymer composites with versatile shape memory properties. J Mater Chem 22(47):24776–24782CrossRef
23.
Zurück zum Zitat Katzenberg F, Joerg CT (2016) Shape memory natural rubber. J Polym Sci B Polym Phys 54(14):1381–1388CrossRef Katzenberg F, Joerg CT (2016) Shape memory natural rubber. J Polym Sci B Polym Phys 54(14):1381–1388CrossRef
24.
Zurück zum Zitat Quitmann D, Frauke MR, Heuwers B, Katzenberg F, Joerg CT (2015) Programming of shape memory natural rubber for near-discrete shape transitions. ACS Appl Mater Interfaces 7(3):1486–1490CrossRef Quitmann D, Frauke MR, Heuwers B, Katzenberg F, Joerg CT (2015) Programming of shape memory natural rubber for near-discrete shape transitions. ACS Appl Mater Interfaces 7(3):1486–1490CrossRef
25.
Zurück zum Zitat Wee JS-H, Chai AB, Ho J-H (2017) Fabrication of shape memory natural rubber using palmitic acid. J King Saud Univ Eng Sci 29(4):494–501CrossRef Wee JS-H, Chai AB, Ho J-H (2017) Fabrication of shape memory natural rubber using palmitic acid. J King Saud Univ Eng Sci 29(4):494–501CrossRef
26.
Zurück zum Zitat Lin GY, Liu SM, Dong FC (2014) Study on shape-memory mechanism and properties of NR/TPI blends. Appl Mech Mater 467:146–151CrossRef Lin GY, Liu SM, Dong FC (2014) Study on shape-memory mechanism and properties of NR/TPI blends. Appl Mech Mater 467:146–151CrossRef
27.
Zurück zum Zitat Yuan D, Chen Z, Xu C, Chen K, Chen Y (2015) Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization. ACS Sustain Chem Eng 3(11):2856–2865CrossRef Yuan D, Chen Z, Xu C, Chen K, Chen Y (2015) Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization. ACS Sustain Chem Eng 3(11):2856–2865CrossRef
28.
Zurück zum Zitat Brostowitz NR, Weiss RA, Cavicchi KA (2014) Facile fabrication of a shape memory polymer by swelling cross-linked natural rubber with stearic acid. ACS Macro Lett 3(4):374–377CrossRef Brostowitz NR, Weiss RA, Cavicchi KA (2014) Facile fabrication of a shape memory polymer by swelling cross-linked natural rubber with stearic acid. ACS Macro Lett 3(4):374–377CrossRef
29.
Zurück zum Zitat Pantoja M, Lin Z, Cakmak M, Cavicchi KA (2018) Structure–property relationships of fatty acid swollen, crosslinked natural rubber shape memory polymers. J Polym Sci B Polym Phys 56(8):673–688CrossRef Pantoja M, Lin Z, Cakmak M, Cavicchi KA (2018) Structure–property relationships of fatty acid swollen, crosslinked natural rubber shape memory polymers. J Polym Sci B Polym Phys 56(8):673–688CrossRef
30.
Zurück zum Zitat Jose T, Moni G, Salini S, Raju AJ, George JJ, George SC (2017) Multifunctional multi-walled carbon nanotube reinforced natural rubber nanocomposites. Ind Crop Prod 105:63–73CrossRef Jose T, Moni G, Salini S, Raju AJ, George JJ, George SC (2017) Multifunctional multi-walled carbon nanotube reinforced natural rubber nanocomposites. Ind Crop Prod 105:63–73CrossRef
31.
Zurück zum Zitat Lu Y, Li J, Yu H, Wang W, Liu L, Wang K, Zhang L (2018) Plasma induced surface coating on carbon nanotube bundles to fabricate natural rubber nanocomposites. Polym Test 65:21–28CrossRef Lu Y, Li J, Yu H, Wang W, Liu L, Wang K, Zhang L (2018) Plasma induced surface coating on carbon nanotube bundles to fabricate natural rubber nanocomposites. Polym Test 65:21–28CrossRef
32.
Zurück zum Zitat Selvan NT, Eshwaran SB, Das A, Stöckelhuber KW, Wießner S, Pötschke P, Nando GB, Chervanyov AI, Heinrich G (2016) Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications. Sensor Actuat A-Phys 239:102–113CrossRef Selvan NT, Eshwaran SB, Das A, Stöckelhuber KW, Wießner S, Pötschke P, Nando GB, Chervanyov AI, Heinrich G (2016) Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications. Sensor Actuat A-Phys 239:102–113CrossRef
33.
Zurück zum Zitat Fu X, Xie Z, Wei L, Huang C, Luo M, Huang G (2018) Detecting structural orientation in isoprene rubber/multiwall carbon nanotube nanocomposites at different scales during uniaxial deformation. Polym Int 67(3):258–268CrossRef Fu X, Xie Z, Wei L, Huang C, Luo M, Huang G (2018) Detecting structural orientation in isoprene rubber/multiwall carbon nanotube nanocomposites at different scales during uniaxial deformation. Polym Int 67(3):258–268CrossRef
34.
Zurück zum Zitat Lee EJ, Park JK, Lee Y-S, Lim K-H (2010) Comparison of thermal properties of crude by-product polyolefin wax, fractionated paraffin wax and their blend. Korean J Chem Eng 27(2):524–530CrossRef Lee EJ, Park JK, Lee Y-S, Lim K-H (2010) Comparison of thermal properties of crude by-product polyolefin wax, fractionated paraffin wax and their blend. Korean J Chem Eng 27(2):524–530CrossRef
35.
Zurück zum Zitat Xia M, Yuan Y, Zhao X, Cao X, Tang Z (2016) Cold storage condensation heat recovery system with a novel composite phase change material. Appl Energ 175:259–268CrossRef Xia M, Yuan Y, Zhao X, Cao X, Tang Z (2016) Cold storage condensation heat recovery system with a novel composite phase change material. Appl Energ 175:259–268CrossRef
36.
Zurück zum Zitat Zhang X, He P, Zhang X, Li C, Liu H, Wang S, Dong F (2018) Manganese hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: facile synthesis, characterization and application to high performance supercapacitors. Electrochim Acta 276:92–101CrossRef Zhang X, He P, Zhang X, Li C, Liu H, Wang S, Dong F (2018) Manganese hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: facile synthesis, characterization and application to high performance supercapacitors. Electrochim Acta 276:92–101CrossRef
37.
Zurück zum Zitat Rosli NA, Ahmad I, Anuar FH, Abdullah I (2016) Mechanical and thermal properties of natural rubber-modified poly(lactic acid) compatibilized with telechelic liquid natural rubber. Polym Test 54:196–202CrossRef Rosli NA, Ahmad I, Anuar FH, Abdullah I (2016) Mechanical and thermal properties of natural rubber-modified poly(lactic acid) compatibilized with telechelic liquid natural rubber. Polym Test 54:196–202CrossRef
38.
Zurück zum Zitat Dghima F, Bouaziz M, Mezghani I, Boukhris M, Neffati M (2015) Laticifers identification and natural rubber characterization from the latex of Periploca angustifolia Labill (Apocynaceae). Flora 217:90–98CrossRef Dghima F, Bouaziz M, Mezghani I, Boukhris M, Neffati M (2015) Laticifers identification and natural rubber characterization from the latex of Periploca angustifolia Labill (Apocynaceae). Flora 217:90–98CrossRef
39.
Zurück zum Zitat Wang Q, Zhou L, Jiang Y, Gao J (2011) Improved stability of the carbon nanotubes–enzyme bioconjugates by biomimetic silicification. Enzym Microb Technol 49(1):11–16CrossRef Wang Q, Zhou L, Jiang Y, Gao J (2011) Improved stability of the carbon nanotubes–enzyme bioconjugates by biomimetic silicification. Enzym Microb Technol 49(1):11–16CrossRef
40.
Zurück zum Zitat Ismail H, Ramly F, Othman N (2010) Multiwall carbon nanotube-filled natural rubber: the effects of filler loading and mixing method. Polym Plast Technol Eng 49(3):260–266CrossRef Ismail H, Ramly F, Othman N (2010) Multiwall carbon nanotube-filled natural rubber: the effects of filler loading and mixing method. Polym Plast Technol Eng 49(3):260–266CrossRef
41.
Zurück zum Zitat Saliney T, Soney CG, Sabu T (2017) Evaluation of mechanical, thermal, electrical, and transport properties of MWCNT-filled NR/NBR blend composites. Polym Eng Sci 58(6):961–972 Saliney T, Soney CG, Sabu T (2017) Evaluation of mechanical, thermal, electrical, and transport properties of MWCNT-filled NR/NBR blend composites. Polym Eng Sci 58(6):961–972
42.
Zurück zum Zitat Taghizadeh A, Favis BD (2013) Carbon nanotubes in blends of polycaprolactone/thermoplastic starch. Carbohydr Polym 98(1):189–198CrossRef Taghizadeh A, Favis BD (2013) Carbon nanotubes in blends of polycaprolactone/thermoplastic starch. Carbohydr Polym 98(1):189–198CrossRef
43.
Zurück zum Zitat Zhang Z-X, Wang W-Y, Yang J-H, Zhang N, Huang T, Wang Y (2016) Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J Phys Chem C 120(40):22793–22802CrossRef Zhang Z-X, Wang W-Y, Yang J-H, Zhang N, Huang T, Wang Y (2016) Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J Phys Chem C 120(40):22793–22802CrossRef
44.
Zurück zum Zitat Zhang W, Lu P, Qian L, Xiao H (2014) Fabrication of superhydrophobic paper surface via wax mixture coating. Chem Eng J 250:431–436CrossRef Zhang W, Lu P, Qian L, Xiao H (2014) Fabrication of superhydrophobic paper surface via wax mixture coating. Chem Eng J 250:431–436CrossRef
45.
Zurück zum Zitat Zhao P, Li L, Luo Y, Lv Z, Xu K, Li S, Zhong J, Wang Z, Peng Z (2016) Effect of blend ratio on the morphology and electromagnetic properties of nanoparticles incorporated natural rubber blends. Composites Part B 99:216–223CrossRef Zhao P, Li L, Luo Y, Lv Z, Xu K, Li S, Zhong J, Wang Z, Peng Z (2016) Effect of blend ratio on the morphology and electromagnetic properties of nanoparticles incorporated natural rubber blends. Composites Part B 99:216–223CrossRef
46.
Zurück zum Zitat Sotomayor ME, Krupa I, Várez A, Levenfeld B (2014) Thermal and mechanical characterization of injection moulded high density polyethylene/paraffin wax blends as phase change materials. Renew Energy 68:140–145CrossRef Sotomayor ME, Krupa I, Várez A, Levenfeld B (2014) Thermal and mechanical characterization of injection moulded high density polyethylene/paraffin wax blends as phase change materials. Renew Energy 68:140–145CrossRef
47.
Zurück zum Zitat Xiao Y, Zhou S, Wang L, Gong T (2010) Electro-active shape memory properties of polu(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Symp Ser 2(12):3506–3514 Xiao Y, Zhou S, Wang L, Gong T (2010) Electro-active shape memory properties of polu(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Symp Ser 2(12):3506–3514
48.
Zurück zum Zitat Raghunath S, Kumar S, Samal SK, Mohanty S, Nayak SK (2018) PLA/ESO/MWCNT nanocomposite: a study on mechanical, thermal and electroactive shape memory properties. J Polym Res 25:126CrossRef Raghunath S, Kumar S, Samal SK, Mohanty S, Nayak SK (2018) PLA/ESO/MWCNT nanocomposite: a study on mechanical, thermal and electroactive shape memory properties. J Polym Res 25:126CrossRef
49.
Zurück zum Zitat Anthamatten M, Roddecha S, Li J (2013) Energy storage capacity of shape-memory polymers. Macromolecules 46(10):4230–4234CrossRef Anthamatten M, Roddecha S, Li J (2013) Energy storage capacity of shape-memory polymers. Macromolecules 46(10):4230–4234CrossRef
Metadaten
Titel
Properties and characterization of near infrared-triggered natural rubber (NR)/carnauba wax (CW)/carbon nanotube (CNT) shape memory bio-nanocomposites
verfasst von
Sun-Mou Lai
Geng-Lun Guo
Kuan-Ting Han
Po-Sung Huang
Zhen-Lin Huang
Ming-Jun Jiang
Ya-Ru Zou
Publikationsdatum
01.04.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 4/2019
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1742-4

Weitere Artikel der Ausgabe 4/2019

Journal of Polymer Research 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.