Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Properties of Carbon Aerogels and Their Organic Precursors

verfasst von : Ana Arenillas, J. Angel Menéndez, Gudrun Reichenauer, Alain Celzard, Vanessa Fierro, Francisco José Maldonado Hodar, Esther Bailόn-Garcia, Nathalie Job

Erschienen in: Organic and Carbon Gels

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aerogels are sol-gel derived porous solids with structural properties, such as porosity, pore size, pore and solid phase connectivity that can be tailored over a wide range to provide unique material properties for different fields of applications, such as filters and adsorbers, catalyst supports, electrodes for electrical energy storage, and materials for lightweight construction or thermal insulation.
In this context, carbon aerogels and their organic precursor represent an important class of aerogels with very different physical properties at similar structural characteristics. This is due to the different intrinsic properties of the respective backbone components: At given meso- and macrostructure carbon aerogels are characterized by high thermal and electrical conductivity, significant mechanical brittleness, high porosity of the backbone phase related to micropores (<2 nm), and thus specific surface areas up to about 2000 m2/g. In contrast, the respective organic precursors exhibit very small electrical conductivities and a significantly reduced heat transfer via the aerogel backbone phase; they furthermore may be mechanically more flexible and are limited to specific surface areas below 1000 m2/g. The chapter provides an overview over typical structural and physical properties of carbon aerogels and their precursors.
Understanding structure–property relationships and optimizing aerogels for different applications requires reliable characterization techniques. The review article addresses different characterization techniques as well as the problem of artifacts upon structural characterization; the latter is due to the unique combination of small pore sizes and large porosities characteristic for aerogels. With that in mind, the article alternative, in part even more powerful approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This effect may also create artifacts upon N2 and CO2 adsorption analysis at 77 K and 273 K, respectively, as prior to analysis the total volume of the sample holder including the pores in the specimen is quantified by helium pycnometry. Therefore, it is recommended for high-quality analysis to perform this part of the measurement after the actual nitrogen adsorption analysis.
 
2
Mass fractal materials are defined by a change of their mass m when increasing the probing volume (V∿r3) from a given center point in the fractal structure: m(r)∿rDF, with DF the mass fractal dimension.
 
3
ISO 9722: Determination of the specific surface area of solids by gas adsorption—BET method (includes recommendation for microporous solids). ISO 15901: Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption.
 
4
ISO 17867:2015: Particle size analysis—Small-angle X-ray scattering.
 
5
Definition IUPAC: mesopores: 2–50 mm, macropores >50 nm [2].
 
7
As He, typically used for the detection of the volume of the sample holder prior to the actual analysis with CO2 or N2, may be trapped in the micropores of (non-activated) carbons, it is recommended to explicitly perform this step after the analysis see Ref. [47].
 
Literatur
1.
Zurück zum Zitat G. Reichenauer, Aerogels, in Kirk-Othmer Encyclopedia of Chemical Technology, ed. by A. Seidel, (Wiley, Hoboken, 2008) G. Reichenauer, Aerogels, in Kirk-Othmer Encyclopedia of Chemical Technology, ed. by A. Seidel, (Wiley, Hoboken, 2008)
2.
Zurück zum Zitat M. Thommes et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87(9-10), 1051–1069 (2015)CrossRef M. Thommes et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87(9-10), 1051–1069 (2015)CrossRef
3.
Zurück zum Zitat J.B. Wang et al., The porous structures of activated carbon aerogels and their effects on electrochemical performance. J. Power Sources 185(1), 589–594 (2008)CrossRef J.B. Wang et al., The porous structures of activated carbon aerogels and their effects on electrochemical performance. J. Power Sources 185(1), 589–594 (2008)CrossRef
4.
Zurück zum Zitat S.-W. Hwang, S.-H. Hyun, Synthesis and characterization of tin oxide/carbon aerogel composite electrodes for electrochemical supercapacitors. J. Power Sources 172(1), 451–459 (2007)CrossRef S.-W. Hwang, S.-H. Hyun, Synthesis and characterization of tin oxide/carbon aerogel composite electrodes for electrochemical supercapacitors. J. Power Sources 172(1), 451–459 (2007)CrossRef
5.
Zurück zum Zitat T. Bordjiba, M. Mohamedi, L.H. Dao, Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels. J. Power Sources 172(2), 991–998 (2007)CrossRef T. Bordjiba, M. Mohamedi, L.H. Dao, Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels. J. Power Sources 172(2), 991–998 (2007)CrossRef
6.
Zurück zum Zitat L. Ling, M. Qing-Han, Electrochemical properties of mesoporous carbon aerogel electrodes for electric double layer capacitors. J. Mater. Sci. 40, 4105–4107 (2005)CrossRef L. Ling, M. Qing-Han, Electrochemical properties of mesoporous carbon aerogel electrodes for electric double layer capacitors. J. Mater. Sci. 40, 4105–4107 (2005)CrossRef
7.
Zurück zum Zitat S.J. Kim, S.W. Hwang, S.H. Hyun, Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 40(3), 725–731 (2005)CrossRef S.J. Kim, S.W. Hwang, S.H. Hyun, Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 40(3), 725–731 (2005)CrossRef
8.
Zurück zum Zitat H. Proebstle, M. Wiener, J. Fricke, Carbon aerogels for electrochemical double layer capacitors. J. Porous. Mater. 10(4), 213–222 (2003)CrossRef H. Proebstle, M. Wiener, J. Fricke, Carbon aerogels for electrochemical double layer capacitors. J. Porous. Mater. 10(4), 213–222 (2003)CrossRef
9.
Zurück zum Zitat W.C. Li, H. Probstle, J. Fricke, Electrochemical behavior of mixed CmRF based carbon aerogels as electrode materials for supercapacitors. J. Non-Cryst. Solids 325(1-3), 1–5 (2003)CrossRef W.C. Li, H. Probstle, J. Fricke, Electrochemical behavior of mixed CmRF based carbon aerogels as electrode materials for supercapacitors. J. Non-Cryst. Solids 325(1-3), 1–5 (2003)CrossRef
10.
Zurück zum Zitat R.W. Pekala et al., Carbon aerogels for electrochemical applications. J. Non-Cryst. Solids 225(1), 74–80 (1998)CrossRef R.W. Pekala et al., Carbon aerogels for electrochemical applications. J. Non-Cryst. Solids 225(1), 74–80 (1998)CrossRef
11.
Zurück zum Zitat T.J. Welgemoed, C.F. Schutte, Capacitive delonization technology (TM): an alternative desalination solution. Desalination 183(1-3), 327–340 (2005)CrossRef T.J. Welgemoed, C.F. Schutte, Capacitive delonization technology (TM): an alternative desalination solution. Desalination 183(1-3), 327–340 (2005)CrossRef
12.
Zurück zum Zitat M. Glora et al., Integration of carbon aerogels in PEM fuel cells. J. Non-Cryst. Solids 285(1-3), 283–287 (2001)CrossRef M. Glora et al., Integration of carbon aerogels in PEM fuel cells. J. Non-Cryst. Solids 285(1-3), 283–287 (2001)CrossRef
13.
Zurück zum Zitat N.J. Cherepy et al., Carbon Aerogel and Xerogel Fuels for Fuel Cells and Batteries (The Regents of the University of California, Oakland, 2006) N.J. Cherepy et al., Carbon Aerogel and Xerogel Fuels for Fuel Cells and Batteries (The Regents of the University of California, Oakland, 2006)
14.
Zurück zum Zitat H.D. Du et al., Carbon aerogel supported Pt-Ru catalysts for using as the anode of direct methanol fuel cells. Carbon 45(2), 429–435 (2007)CrossRef H.D. Du et al., Carbon aerogel supported Pt-Ru catalysts for using as the anode of direct methanol fuel cells. Carbon 45(2), 429–435 (2007)CrossRef
15.
Zurück zum Zitat R. Petricevic, M. Glora, J. Fricke, Planar fibre reinforced carbon aerogels for application in PEM fuel cells. Carbon 39(6), 857–867 (2001)CrossRef R. Petricevic, M. Glora, J. Fricke, Planar fibre reinforced carbon aerogels for application in PEM fuel cells. Carbon 39(6), 857–867 (2001)CrossRef
16.
Zurück zum Zitat C. Moreno-Castilla, F.J. Maldonado-Hodar, Carbon aerogels for catalysis applications: an overview. Carbon 43(3), 455–465 (2005)CrossRef C. Moreno-Castilla, F.J. Maldonado-Hodar, Carbon aerogels for catalysis applications: an overview. Carbon 43(3), 455–465 (2005)CrossRef
17.
Zurück zum Zitat M. Martins et al., Preparation of macroporous alginate-based aerogels for biomedical applications. J. Supercrit. Fluids 106, 152–159 (2015)CrossRef M. Martins et al., Preparation of macroporous alginate-based aerogels for biomedical applications. J. Supercrit. Fluids 106, 152–159 (2015)CrossRef
18.
Zurück zum Zitat K. Rinki et al., Chitosan aerogels exhibiting high surface area for biomedical application: preparation, characterization, and antibacterial study. Int. J. Polym. Mater. 60(12), 988–999 (2011)CrossRef K. Rinki et al., Chitosan aerogels exhibiting high surface area for biomedical application: preparation, characterization, and antibacterial study. Int. J. Polym. Mater. 60(12), 988–999 (2011)CrossRef
19.
Zurück zum Zitat J. Stergar, U. Maver, Review of aerogel-based materials in biomedical applications. J. Sol-Gel Sci. Technol. 77(3), 738–752 (2016)CrossRef J. Stergar, U. Maver, Review of aerogel-based materials in biomedical applications. J. Sol-Gel Sci. Technol. 77(3), 738–752 (2016)CrossRef
20.
Zurück zum Zitat N. Yan et al., Antibacterial properties and cytocompatibility of bio-based nanostructured carbon aerogels derived from silver nanoparticles deposited onto bacterial cellulose. RSC Adv. 5(118), 97467–97476 (2015)CrossRef N. Yan et al., Antibacterial properties and cytocompatibility of bio-based nanostructured carbon aerogels derived from silver nanoparticles deposited onto bacterial cellulose. RSC Adv. 5(118), 97467–97476 (2015)CrossRef
21.
Zurück zum Zitat M. Wiener et al., Carbon aerogel-based high-temperature thermal insulation. Int. J. Thermophys. 30(4), 1372–1385 (2009)CrossRef M. Wiener et al., Carbon aerogel-based high-temperature thermal insulation. Int. J. Thermophys. 30(4), 1372–1385 (2009)CrossRef
22.
Zurück zum Zitat M. Wiener et al., Thermal conductivity of carbon aerogels as a function of pyrolysis temperature. Int. J. Thermophys. 27(6), 1826–1843 (2006)CrossRef M. Wiener et al., Thermal conductivity of carbon aerogels as a function of pyrolysis temperature. Int. J. Thermophys. 27(6), 1826–1843 (2006)CrossRef
23.
Zurück zum Zitat J. Settelein et al., The external surface area of carbon additives as key to enhance the dynamic charge acceptance of lead-carbon electrodes. J. Energy Storage 15, 196–204 (2018)CrossRef J. Settelein et al., The external surface area of carbon additives as key to enhance the dynamic charge acceptance of lead-carbon electrodes. J. Energy Storage 15, 196–204 (2018)CrossRef
24.
Zurück zum Zitat E. Meyer, B. Milow, L. Ratke, Development of aerogel additives for the foundry industry. J. Supercrit. Fluids 106, 62–68 (2015)CrossRef E. Meyer, B. Milow, L. Ratke, Development of aerogel additives for the foundry industry. J. Supercrit. Fluids 106, 62–68 (2015)CrossRef
25.
Zurück zum Zitat F. Carrasco-Marin, D. Fairen-Jimenez, C. Moreno-Castilla, Carbon aerogels from gallic acid-resorcinol mixtures as adsorbents of benzene, toluene and xylenes from dry and wet air under dynamic conditions. Carbon 47(2), 463–469 (2009)CrossRef F. Carrasco-Marin, D. Fairen-Jimenez, C. Moreno-Castilla, Carbon aerogels from gallic acid-resorcinol mixtures as adsorbents of benzene, toluene and xylenes from dry and wet air under dynamic conditions. Carbon 47(2), 463–469 (2009)CrossRef
26.
Zurück zum Zitat H. Maleki, Recent advances in aerogels for environmental remediation applications: a review. Chem. Eng. J. 300, 98–118 (2016)CrossRef H. Maleki, Recent advances in aerogels for environmental remediation applications: a review. Chem. Eng. J. 300, 98–118 (2016)CrossRef
27.
Zurück zum Zitat W.C. Li et al., High surface area, mesoporous, glassy alumina with a controllable pore size by nanocasting from carbon aerogels. Chem Eur J 11(5), 1658–1664 (2005)CrossRef W.C. Li et al., High surface area, mesoporous, glassy alumina with a controllable pore size by nanocasting from carbon aerogels. Chem Eur J 11(5), 1658–1664 (2005)CrossRef
28.
Zurück zum Zitat C. Scherdel, T. Scherb, G. Reichenauer, Spherical porous carbon particles derived from suspensions and sediments of resorcinol-formaldehyde particles. Carbon 47(9), 2244–2252 (2009)CrossRef C. Scherdel, T. Scherb, G. Reichenauer, Spherical porous carbon particles derived from suspensions and sediments of resorcinol-formaldehyde particles. Carbon 47(9), 2244–2252 (2009)CrossRef
29.
Zurück zum Zitat R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24(9), 3221–3227 (1989)CrossRef R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24(9), 3221–3227 (1989)CrossRef
30.
Zurück zum Zitat R.W. Pekala, F.M. Kong, A synthetic route to organic aerogels - mechanism, structure, and properties. J. Phys. 50(C-4), C433–C440 (1989) R.W. Pekala, F.M. Kong, A synthetic route to organic aerogels - mechanism, structure, and properties. J. Phys. 50(C-4), C433–C440 (1989)
31.
Zurück zum Zitat C.S. Ashley, C.J. Brinker, D.M. Smith, Aerogels 6 - proceedings of the sixth international symposium on aerogels (ISA-6) - Albuquerque, NM, USA 8-11 October 2000 - preface. J. Non-Cryst. Solids 285(1-3), Vii–Viii (2001)CrossRef C.S. Ashley, C.J. Brinker, D.M. Smith, Aerogels 6 - proceedings of the sixth international symposium on aerogels (ISA-6) - Albuquerque, NM, USA 8-11 October 2000 - preface. J. Non-Cryst. Solids 285(1-3), Vii–Viii (2001)CrossRef
32.
Zurück zum Zitat R. Subrahmanyam et al., Preparation of biopolymer aerogels using green solvents. J. Vis. Exp. 113, 54116 (2016) R. Subrahmanyam et al., Preparation of biopolymer aerogels using green solvents. J. Vis. Exp. 113, 54116 (2016)
33.
Zurück zum Zitat S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127(3211), 741–741 (1931)CrossRef S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127(3211), 741–741 (1931)CrossRef
34.
Zurück zum Zitat S.S. Kistler, Coherent expanded aerogels. J. Phys. Chem. A 36(1), 52–64 (1932)CrossRef S.S. Kistler, Coherent expanded aerogels. J. Phys. Chem. A 36(1), 52–64 (1932)CrossRef
35.
Zurück zum Zitat C.A. Garcia-Gonzalez, M. Alnaief, I. Smirnova, Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 86(4), 1425–1438 (2011)CrossRef C.A. Garcia-Gonzalez, M. Alnaief, I. Smirnova, Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 86(4), 1425–1438 (2011)CrossRef
36.
Zurück zum Zitat M. Betz et al., Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J. Supercrit. Fluids 72, 111–119 (2012)CrossRef M. Betz et al., Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J. Supercrit. Fluids 72, 111–119 (2012)CrossRef
37.
Zurück zum Zitat V.S.S. Goncalves et al., Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur. J. Pharm. Biopharm. 107, 160–170 (2016)CrossRef V.S.S. Goncalves et al., Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur. J. Pharm. Biopharm. 107, 160–170 (2016)CrossRef
38.
Zurück zum Zitat D. Long et al., Chemical state of nitrogen in carbon aerogels issued from phenol–melamine–formaldehyde gels. Carbon 46(9), 1259–1262 (2008)CrossRef D. Long et al., Chemical state of nitrogen in carbon aerogels issued from phenol–melamine–formaldehyde gels. Carbon 46(9), 1259–1262 (2008)CrossRef
39.
Zurück zum Zitat M.H. Nguyen, L.H. Dao, Effects of processing variable on melamine-formaldehyde aerogel formation. J. Non-Cryst. Solids 225(1), 51–57 (1998)CrossRef M.H. Nguyen, L.H. Dao, Effects of processing variable on melamine-formaldehyde aerogel formation. J. Non-Cryst. Solids 225(1), 51–57 (1998)CrossRef
40.
Zurück zum Zitat R.W. Pekala, Melamine-formaldehyde aerogels, in US5086085A, ed. U. US Energy (1991) R.W. Pekala, Melamine-formaldehyde aerogels, in US5086085A, ed. U. US Energy (1991)
41.
Zurück zum Zitat M.A. Worsley et al., Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067–14069 (2010)CrossRef M.A. Worsley et al., Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067–14069 (2010)CrossRef
42.
Zurück zum Zitat J.J. Mao et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11(4), 772–799 (2018)CrossRef J.J. Mao et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11(4), 772–799 (2018)CrossRef
43.
Zurück zum Zitat M. Wiener, G. Reichenauer, Microstructure of porous carbons derived from phenolic resin – impact of annealing at temperatures up to 2000°C analyzed by complementary characterization methods. Microporous Mesoporous Mater. 203, 116–122 (2015)CrossRef M. Wiener, G. Reichenauer, Microstructure of porous carbons derived from phenolic resin – impact of annealing at temperatures up to 2000°C analyzed by complementary characterization methods. Microporous Mesoporous Mater. 203, 116–122 (2015)CrossRef
44.
Zurück zum Zitat M. Schwan, L. Ratke, Flexibilisation of resorcinol–formaldehyde aerogels. J. Mater. Chem. A 1(43), 13462 (2013)CrossRef M. Schwan, L. Ratke, Flexibilisation of resorcinol–formaldehyde aerogels. J. Mater. Chem. A 1(43), 13462 (2013)CrossRef
45.
Zurück zum Zitat R. Tannert et al., The three-dimensional structure of flexible resorcinol-formaldehyde aerogels investigated by means of holotomography. J. Sol-Gel Sci. Technol. 84(3), 391–399 (2017)CrossRef R. Tannert et al., The three-dimensional structure of flexible resorcinol-formaldehyde aerogels investigated by means of holotomography. J. Sol-Gel Sci. Technol. 84(3), 391–399 (2017)CrossRef
46.
Zurück zum Zitat G. Reichenauer, Structural characterization of aerogels, in Aerogels Handbook, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer, New York, 2011), pp. 449–498CrossRef G. Reichenauer, Structural characterization of aerogels, in Aerogels Handbook, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer, New York, 2011), pp. 449–498CrossRef
47.
Zurück zum Zitat J.U. Keller, M.U. Goebel, T. Seeger, Oscillometric-gravimetric measurements of pure gas adsorption equilibria without the non-adsorption of helium hypothesis. Adsorption 23(6), 753–766 (2017)CrossRef J.U. Keller, M.U. Goebel, T. Seeger, Oscillometric-gravimetric measurements of pure gas adsorption equilibria without the non-adsorption of helium hypothesis. Adsorption 23(6), 753–766 (2017)CrossRef
48.
Zurück zum Zitat G. Reichenauer, C. Stumpf, J. Fricke, Characterization of Sio2, Rf and carbon aerogels by dynamic gas-expansion. J. Non-Cryst. Solids 186, 334–341 (1995)CrossRef G. Reichenauer, C. Stumpf, J. Fricke, Characterization of Sio2, Rf and carbon aerogels by dynamic gas-expansion. J. Non-Cryst. Solids 186, 334–341 (1995)CrossRef
49.
Zurück zum Zitat H. Tamon, E. Ishizaka, SAXS study on gelation process in preparation of resorcinol-formaldehyde aerogel. J. Colloid Interface Sci. 206(2), 577–582 (1998)CrossRef H. Tamon, E. Ishizaka, SAXS study on gelation process in preparation of resorcinol-formaldehyde aerogel. J. Colloid Interface Sci. 206(2), 577–582 (1998)CrossRef
50.
Zurück zum Zitat R.W. Pekala, D.W. Schaefer, Structure of organic aerogels. 1. Morphology and scaling. Macromolecules 26(20), 5487–5493 (1993)CrossRef R.W. Pekala, D.W. Schaefer, Structure of organic aerogels. 1. Morphology and scaling. Macromolecules 26(20), 5487–5493 (1993)CrossRef
51.
Zurück zum Zitat S. Berthon et al., DLS and SAXS investigations of organic gels and aerogels. J. Non-Cryst. Solids 285(1-3), 154–161 (2001)CrossRef S. Berthon et al., DLS and SAXS investigations of organic gels and aerogels. J. Non-Cryst. Solids 285(1-3), 154–161 (2001)CrossRef
52.
Zurück zum Zitat G. Reichenauer, G.W. Scherer, Nitrogen adsorption in compliant materials. J. Non-Cryst. Solids 277(2-3), 162–172 (2000)CrossRef G. Reichenauer, G.W. Scherer, Nitrogen adsorption in compliant materials. J. Non-Cryst. Solids 277(2-3), 162–172 (2000)CrossRef
53.
Zurück zum Zitat R. Saliger et al., Carbon aerogels from dilute catalysis of resorcinol with formaldehyde. J. Non-Cryst. Solids 221(2-3), 144–150 (1997)CrossRef R. Saliger et al., Carbon aerogels from dilute catalysis of resorcinol with formaldehyde. J. Non-Cryst. Solids 221(2-3), 144–150 (1997)CrossRef
54.
Zurück zum Zitat R. Saliger et al., Structure of Resorcinol-Formaldehyde and Carbon Aerogels Prepared at Very Low Catalyst Concentrations (Physikalisches Institut, Universität Würzburg, Würzburg, 1996) R. Saliger et al., Structure of Resorcinol-Formaldehyde and Carbon Aerogels Prepared at Very Low Catalyst Concentrations (Physikalisches Institut, Universität Würzburg, Würzburg, 1996)
55.
Zurück zum Zitat H. Giesche, Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact. 23(1), 9–19 (2006)CrossRef H. Giesche, Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact. 23(1), 9–19 (2006)CrossRef
56.
Zurück zum Zitat G. Reichenauer, G.W. Scherer, Effects upon nitrogen sorption analysis in aerogels. J. Colloid Interface Sci. 236(2), 385–386 (2001)CrossRef G. Reichenauer, G.W. Scherer, Effects upon nitrogen sorption analysis in aerogels. J. Colloid Interface Sci. 236(2), 385–386 (2001)CrossRef
57.
Zurück zum Zitat L.G. Gurvich, Physio-chemical attractive force. J. Russ. Phys. Chem. Soc. 47, 805–827 (1915) L.G. Gurvich, Physio-chemical attractive force. J. Russ. Phys. Chem. Soc. 47, 805–827 (1915)
58.
Zurück zum Zitat G. Reichenauer, Characterization of aerogels – challenges and prospects. Adv. Sci. Technol. 91, 54–63 (2014)CrossRef G. Reichenauer, Characterization of aerogels – challenges and prospects. Adv. Sci. Technol. 91, 54–63 (2014)CrossRef
59.
Zurück zum Zitat C. Scherdel, G. Reichenauer, The impact of residual adsorbate on the characterization of microporous carbons with small angle scattering. Carbon 50(8), 3074–3082 (2012)CrossRef C. Scherdel, G. Reichenauer, The impact of residual adsorbate on the characterization of microporous carbons with small angle scattering. Carbon 50(8), 3074–3082 (2012)CrossRef
60.
Zurück zum Zitat Y. Hanzawa et al., Structural changes in carbon aerogels with high temperature treatment. Carbon 40(4), 575–581 (2002)CrossRef Y. Hanzawa et al., Structural changes in carbon aerogels with high temperature treatment. Carbon 40(4), 575–581 (2002)CrossRef
61.
Zurück zum Zitat A. Ahmadpour, D.D. Do, The preparation of active carbons from coal by chemical and physical activation. Carbon 34(4), 471–479 (1996)CrossRef A. Ahmadpour, D.D. Do, The preparation of active carbons from coal by chemical and physical activation. Carbon 34(4), 471–479 (1996)CrossRef
62.
Zurück zum Zitat C. Lin, J.A. Ritter, Carbonization and activation of sol-gel derived carbon xerogels. Carbon 38(6), 849–861 (2000)CrossRef C. Lin, J.A. Ritter, Carbonization and activation of sol-gel derived carbon xerogels. Carbon 38(6), 849–861 (2000)CrossRef
63.
Zurück zum Zitat F. Rodríguez-Reinoso, M. Molina-Sabio, Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon 30(7), 1111–1118 (1992)CrossRef F. Rodríguez-Reinoso, M. Molina-Sabio, Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon 30(7), 1111–1118 (1992)CrossRef
64.
Zurück zum Zitat R. Saliger, G. Reichenauer, J. Fricke, Evolution of microporosity upon CO2-activation of carbon aerogels, in Characterization of Porous Solids V, vol. 128, (Elsevier, Amsterdam, 2000), pp. 381–390CrossRef R. Saliger, G. Reichenauer, J. Fricke, Evolution of microporosity upon CO2-activation of carbon aerogels, in Characterization of Porous Solids V, vol. 128, (Elsevier, Amsterdam, 2000), pp. 381–390CrossRef
65.
Zurück zum Zitat M. Zeller et al., Relationship between structural properties and electrochemical characteristics of monolithic carbon xerogel-based electrochemical double-layer electrodes in aqueous and organic electrolytes. Adv. Energy Mater. 2(5), 598–605 (2012)CrossRef M. Zeller et al., Relationship between structural properties and electrochemical characteristics of monolithic carbon xerogel-based electrochemical double-layer electrodes in aqueous and organic electrolytes. Adv. Energy Mater. 2(5), 598–605 (2012)CrossRef
66.
Zurück zum Zitat I. Lederer, C. Balzer, G. Reichenauer, Contributions of storage sites located in micro- and meso/macropores to the capacitance of carbonaceous double layer capacitor electrodes. Electrochim. Acta 281, 753–760 (2018)CrossRef I. Lederer, C. Balzer, G. Reichenauer, Contributions of storage sites located in micro- and meso/macropores to the capacitance of carbonaceous double layer capacitor electrodes. Electrochim. Acta 281, 753–760 (2018)CrossRef
67.
Zurück zum Zitat B.C. Lippens, J.H. de Boer, Studies on pore systems in catalysts V. The t method. J. Catal. 4(3), 319–323 (1965)CrossRef B.C. Lippens, J.H. de Boer, Studies on pore systems in catalysts V. The t method. J. Catal. 4(3), 319–323 (1965)CrossRef
68.
Zurück zum Zitat C. Scherdel, G. Reichenauer, M. Wiener, Relationship between pore volumes and surface areas derived from the evaluation of N2-sorption data by DR-, BET- and t-plot. Microporous Mesoporous Mater. 132(3), 572–575 (2010)CrossRef C. Scherdel, G. Reichenauer, M. Wiener, Relationship between pore volumes and surface areas derived from the evaluation of N2-sorption data by DR-, BET- and t-plot. Microporous Mesoporous Mater. 132(3), 572–575 (2010)CrossRef
69.
Zurück zum Zitat R.W. Magee, Evaluation of the external surface area of carbon black by nitrogen adsorption. Rubber Chem. Technol. 68, 590–600 (1994)CrossRef R.W. Magee, Evaluation of the external surface area of carbon black by nitrogen adsorption. Rubber Chem. Technol. 68, 590–600 (1994)CrossRef
70.
Zurück zum Zitat C. Balzer, M. Seitz, G. Reichenauer (ZAE Bayern, 2017) unpublished work C. Balzer, M. Seitz, G. Reichenauer (ZAE Bayern, 2017) unpublished work
71.
Zurück zum Zitat S. Braxmeier, G. Reichenauer (ZAE Bayern, 2018) unpublished work S. Braxmeier, G. Reichenauer (ZAE Bayern, 2018) unpublished work
72.
Zurück zum Zitat C. Scherdel, G. Reichenauer, Microstructure and morphology of porous carbons derived from sucrose. Carbon 47(4), 1102–1111 (2009)CrossRef C. Scherdel, G. Reichenauer, Microstructure and morphology of porous carbons derived from sucrose. Carbon 47(4), 1102–1111 (2009)CrossRef
73.
Zurück zum Zitat G. Porod, Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. I. Teil. Colloid Polym. Sci. 124(2), 83–114 (1951) G. Porod, Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. I. Teil. Colloid Polym. Sci. 124(2), 83–114 (1951)
74.
Zurück zum Zitat G. Porod, Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. II.Teil. Kolloid-Z. Z. Fur Polym. 125(2), 108–122 (1952)CrossRef G. Porod, Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. II.Teil. Kolloid-Z. Z. Fur Polym. 125(2), 108–122 (1952)CrossRef
75.
Zurück zum Zitat A. Emmerling, J. Fricke, Small-angle scattering and the structure of aerogels. J. Non-Cryst. Solids 145(1-3), 113–120 (1992)CrossRef A. Emmerling, J. Fricke, Small-angle scattering and the structure of aerogels. J. Non-Cryst. Solids 145(1-3), 113–120 (1992)CrossRef
76.
Zurück zum Zitat H. Lu, H. Luo, N. Leventis, Mechanical characterization of aerogels, in Aeroogels Handbook, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer, New York, 2011), pp. 499–535CrossRef H. Lu, H. Luo, N. Leventis, Mechanical characterization of aerogels, in Aeroogels Handbook, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer, New York, 2011), pp. 499–535CrossRef
77.
Zurück zum Zitat J. Gross et al., Elastic nonlinearity of aerogels. Phys. Rev. B 45(22), 12774–12777 (1992)CrossRef J. Gross et al., Elastic nonlinearity of aerogels. Phys. Rev. B 45(22), 12774–12777 (1992)CrossRef
78.
Zurück zum Zitat P. Xhonneux et al., Scaling nonlinear elasticity in silica aerogels. Europhys. Lett. 10(8), 733–738 (1989)CrossRef P. Xhonneux et al., Scaling nonlinear elasticity in silica aerogels. Europhys. Lett. 10(8), 733–738 (1989)CrossRef
79.
Zurück zum Zitat J. Gross, G. Reichenauer, J. Fricke, Mechanical-properties of SiO2 aerogels. J. Phys. D Appl. Phys. 21(9), 1447–1451 (1988)CrossRef J. Gross, G. Reichenauer, J. Fricke, Mechanical-properties of SiO2 aerogels. J. Phys. D Appl. Phys. 21(9), 1447–1451 (1988)CrossRef
80.
Zurück zum Zitat T.M. Atanackovic, A. Guran, Theory of Elasticity for Scientists and Engineers (Birkhäuser, Boston, 2000)CrossRef T.M. Atanackovic, A. Guran, Theory of Elasticity for Scientists and Engineers (Birkhäuser, Boston, 2000)CrossRef
81.
Zurück zum Zitat C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 1995) C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 1995)
82.
Zurück zum Zitat J. Gross, J. Fricke, Ultrasonic velocity-measurements in silica, carbon and organic aerogels. J. Non-Cryst. Solids 145(1-3), 217–222 (1992)CrossRef J. Gross, J. Fricke, Ultrasonic velocity-measurements in silica, carbon and organic aerogels. J. Non-Cryst. Solids 145(1-3), 217–222 (1992)CrossRef
83.
Zurück zum Zitat R.W. Pekala, C.T. Alviso, J.D. Lemay, Organic aerogels - microstructural dependence of mechanical-properties in compression. J. Non-Cryst. Solids 125(1-2), 67–75 (1990)CrossRef R.W. Pekala, C.T. Alviso, J.D. Lemay, Organic aerogels - microstructural dependence of mechanical-properties in compression. J. Non-Cryst. Solids 125(1-2), 67–75 (1990)CrossRef
84.
Zurück zum Zitat G. Hasegawa et al., Highly flexible hybrid polymer aerogels and xerogels based on resorcinol-formaldehyde with enhanced elastic stiffness and recoverability: insights into the origin of their mechanical properties. Chem. Mater. 29(5), 2122–2134 (2017)CrossRef G. Hasegawa et al., Highly flexible hybrid polymer aerogels and xerogels based on resorcinol-formaldehyde with enhanced elastic stiffness and recoverability: insights into the origin of their mechanical properties. Chem. Mater. 29(5), 2122–2134 (2017)CrossRef
85.
Zurück zum Zitat X. Lu et al., Thermal conductivity of monolithic organic aerogels. Science 255(5047), 971–972 (1992)CrossRef X. Lu et al., Thermal conductivity of monolithic organic aerogels. Science 255(5047), 971–972 (1992)CrossRef
86.
Zurück zum Zitat X. Lu et al., Thermal and electrical conductivity of monolithic carbon aerogels. J. Appl. Phys. 73(2), 581–584 (1993)CrossRef X. Lu et al., Thermal and electrical conductivity of monolithic carbon aerogels. J. Appl. Phys. 73(2), 581–584 (1993)CrossRef
87.
Zurück zum Zitat A. Emmerling, J. Fricke, Scaling properties and structure of aerogels. J. Sol-Gel Sci. Technol. 8(1-3), 781–788 (1997)CrossRef A. Emmerling, J. Fricke, Scaling properties and structure of aerogels. J. Sol-Gel Sci. Technol. 8(1-3), 781–788 (1997)CrossRef
88.
Zurück zum Zitat K. Swimm et al., Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm. Int. J. Thermophys. 30(4), 1329–1342 (2009)CrossRef K. Swimm et al., Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm. Int. J. Thermophys. 30(4), 1329–1342 (2009)CrossRef
89.
Zurück zum Zitat K. Swimm et al., Impact of thermal coupling effects on the effective thermal conductivity of aerogels. J. Sol-Gel Sci. Technol. 84(3), 466–474 (2017)CrossRef K. Swimm et al., Impact of thermal coupling effects on the effective thermal conductivity of aerogels. J. Sol-Gel Sci. Technol. 84(3), 466–474 (2017)CrossRef
90.
Zurück zum Zitat K. Swimm et al., Coupling of gaseous and solid thermal conduction in porous solids. J. Non-Cryst. Solids 456, 114–124 (2017)CrossRef K. Swimm et al., Coupling of gaseous and solid thermal conduction in porous solids. J. Non-Cryst. Solids 456, 114–124 (2017)CrossRef
91.
Zurück zum Zitat K. Swimm, H. Weinlader, H.P. Ebert, Influence of spacer systems on heat transfer in evacuated glazing. Int. J. Thermophys. 30(3), 934–948 (2009)CrossRef K. Swimm, H. Weinlader, H.P. Ebert, Influence of spacer systems on heat transfer in evacuated glazing. Int. J. Thermophys. 30(3), 934–948 (2009)CrossRef
92.
Zurück zum Zitat H.-P. Ebert, Thermal properties of aerogels, in Aerogels Handbook, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer, New York, 2011), pp. 537–564CrossRef H.-P. Ebert, Thermal properties of aerogels, in Aerogels Handbook, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer, New York, 2011), pp. 537–564CrossRef
93.
Zurück zum Zitat J.G. Hust, A Fine-Grained, Isotropic Graphite for Use as NBS Thermophysical Property RM’s from 5 to 2500 K (National Bureau of Standards, Gaithersburg, 1984) J.G. Hust, A Fine-Grained, Isotropic Graphite for Use as NBS Thermophysical Property RM’s from 5 to 2500 K (National Bureau of Standards, Gaithersburg, 1984)
94.
Zurück zum Zitat L. Soukup et al., Raman-spectra and electrical-conductivity of glassy-carbon. Mater. Sci. Eng. B 11(1-4), 355–357 (1992)CrossRef L. Soukup et al., Raman-spectra and electrical-conductivity of glassy-carbon. Mater. Sci. Eng. B 11(1-4), 355–357 (1992)CrossRef
95.
Zurück zum Zitat F. Hemberger et al., Thermal transport properties of functionally graded carbon aerogels. Int. J. Thermophys. 30(4), 1357–1371 (2009)CrossRef F. Hemberger et al., Thermal transport properties of functionally graded carbon aerogels. Int. J. Thermophys. 30(4), 1357–1371 (2009)CrossRef
96.
Zurück zum Zitat L. Weigold, G. Reichenauer, Correlation between mechanical stiffness and thermal transport along the solid framework of a uniaxially compressed polyurea aerogel. J. Non-Cryst. Solids 406, 73–78 (2014)CrossRef L. Weigold, G. Reichenauer, Correlation between mechanical stiffness and thermal transport along the solid framework of a uniaxially compressed polyurea aerogel. J. Non-Cryst. Solids 406, 73–78 (2014)CrossRef
97.
Zurück zum Zitat S. Weis, Technische Wärmedämmung mit Kohlenstoffaerogel, in Physikalisches Institut, (Bayerische Julius-Maximilians-Universität Würzburg, Würzburg, 2007) S. Weis, Technische Wärmedämmung mit Kohlenstoffaerogel, in Physikalisches Institut, (Bayerische Julius-Maximilians-Universität Würzburg, Würzburg, 2007)
98.
Zurück zum Zitat W. Behr et al., Self and transport diffusion of fluids in SiO2 alcogels studied by NMR pulsed gradient spin echo and NMR imaging. J. Non-Cryst. Solids 225(1), 91–95 (1998)CrossRef W. Behr et al., Self and transport diffusion of fluids in SiO2 alcogels studied by NMR pulsed gradient spin echo and NMR imaging. J. Non-Cryst. Solids 225(1), 91–95 (1998)CrossRef
99.
Zurück zum Zitat W. Behr, V.C. Behr, G. Reichenauer, Self diffusion coefficients of organic solvents and their binary mixtures with CO2 in silica alcogels at pressures up to 6 MPa derived by NMR pulsed gradient spin echo. J. Supercrit. Fluids 106, 50–56 (2015)CrossRef W. Behr, V.C. Behr, G. Reichenauer, Self diffusion coefficients of organic solvents and their binary mixtures with CO2 in silica alcogels at pressures up to 6 MPa derived by NMR pulsed gradient spin echo. J. Supercrit. Fluids 106, 50–56 (2015)CrossRef
100.
Zurück zum Zitat G. Reichenauer, J. Fricke, Gas transport in Sol-Gel derived porous carbon aerogels, in Fall Meeting of the Material Research Society, Boston, 1996 G. Reichenauer, J. Fricke, Gas transport in Sol-Gel derived porous carbon aerogels, in Fall Meeting of the Material Research Society, Boston, 1996
101.
Zurück zum Zitat P.K.C. Wiggs, The relation between gas permeability and pore structure of solids, in Proc., Int. Conf., Structure and Properties of Porous Materials, London P.K.C. Wiggs, The relation between gas permeability and pore structure of solids, in Proc., Int. Conf., Structure and Properties of Porous Materials, London
102.
Zurück zum Zitat M. Mündlein, S. Braxmeier, G. Reichenauer (ZAE Bayern, 2018) unpublished work M. Mündlein, S. Braxmeier, G. Reichenauer (ZAE Bayern, 2018) unpublished work
103.
Zurück zum Zitat K. Guo et al., Graphene oxide as an anti-shrinkage additive for resorcinol-formaldehyde composite aerogels. Phys. Chem. Chem. Phys. 16(23), 11603–11608 (2014)CrossRef K. Guo et al., Graphene oxide as an anti-shrinkage additive for resorcinol-formaldehyde composite aerogels. Phys. Chem. Chem. Phys. 16(23), 11603–11608 (2014)CrossRef
104.
Zurück zum Zitat T. Bordjiba, M. Mohamedi, L.H. Dao, New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv. Mater. 20(4), 815–819 (2008)CrossRef T. Bordjiba, M. Mohamedi, L.H. Dao, New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv. Mater. 20(4), 815–819 (2008)CrossRef
105.
Zurück zum Zitat S.A. Steiner et al., Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes. Langmuir 23(9), 5161–5166 (2006)CrossRef S.A. Steiner et al., Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes. Langmuir 23(9), 5161–5166 (2006)CrossRef
106.
Zurück zum Zitat J. Wang et al., Carbon cloth reinforced carbon aerogel films derived from resorcinol formaldehyde. J. Porous. Mater. 8(2), 159–165 (2001)CrossRef J. Wang et al., Carbon cloth reinforced carbon aerogel films derived from resorcinol formaldehyde. J. Porous. Mater. 8(2), 159–165 (2001)CrossRef
107.
Zurück zum Zitat J. Feng, C. Zhang, J. Feng, Carbon fiber reinforced carbon aerogel composites for thermal insulation prepared by soft reinforcement. Mater. Lett. 67(1), 266–268 (2012)CrossRef J. Feng, C. Zhang, J. Feng, Carbon fiber reinforced carbon aerogel composites for thermal insulation prepared by soft reinforcement. Mater. Lett. 67(1), 266–268 (2012)CrossRef
108.
Zurück zum Zitat R. Petricevic et al., SAXS investigation of fiber reinforced carbon aerogels, in Hasylab Annual Report, (Physikalisches Institut der Universität Würzburg, Würzburg, 2000) R. Petricevic et al., SAXS investigation of fiber reinforced carbon aerogels, in Hasylab Annual Report, (Physikalisches Institut der Universität Würzburg, Würzburg, 2000)
109.
Zurück zum Zitat C. Schmitt, H. Probstle, J. Fricke, Carbon cloth-reinforced and activated aerogel films for supercapacitors. J. Non-Cryst. Solids 285(1-3), 277–282 (2001)CrossRef C. Schmitt, H. Probstle, J. Fricke, Carbon cloth-reinforced and activated aerogel films for supercapacitors. J. Non-Cryst. Solids 285(1-3), 277–282 (2001)CrossRef
110.
Zurück zum Zitat A. Shaid, L.J. Wang, R. Padhye, The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment. J. Ind. Text. 45(4), 611–625 (2016)CrossRef A. Shaid, L.J. Wang, R. Padhye, The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment. J. Ind. Text. 45(4), 611–625 (2016)CrossRef
111.
Zurück zum Zitat M. Reuss, L. Ratke, Drying of aerogel-bonded sands. J. Mater. Sci. 45(15), 3974–3980 (2010)CrossRef M. Reuss, L. Ratke, Drying of aerogel-bonded sands. J. Mater. Sci. 45(15), 3974–3980 (2010)CrossRef
112.
Zurück zum Zitat N. Job et al., Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43(12), 2481–2494 (2005)CrossRef N. Job et al., Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43(12), 2481–2494 (2005)CrossRef
Metadaten
Titel
Properties of Carbon Aerogels and Their Organic Precursors
verfasst von
Ana Arenillas
J. Angel Menéndez
Gudrun Reichenauer
Alain Celzard
Vanessa Fierro
Francisco José Maldonado Hodar
Esther Bailόn-Garcia
Nathalie Job
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13897-4_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.