Skip to main content
Erschienen in: Artificial Life and Robotics 1/2017

17.10.2016 | Original Article

Propulsion modeling of caudal fin driving system on balloon fish robot

verfasst von: Masato Haga, Masafumi Uchida

Erschienen in: Artificial Life and Robotics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, biomimetic robots combining the characteristics of fish robots and airship robots have been studied. In this work, we consider balloon fish robots (BFR). This paper presents our understanding of the BFR motion obtained through simulations and experimental results. The simulation of the BFR motion is based on a traveling-wave equation, defined as the product of a sine wave and quadratic curve. In this study, we derived an equation of motion for BFR and conducted an experiment to measure the thrust force. By solving the equation of motion with the Runge–Kutta method, we are able to calculate theoretical values for the propulsion velocity of BFR. We validate the simulation by comparing theoretical and experimental propulsion speed values. As a future task, we will measure BFR thrust at more parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hosoi K, Sugimoto M (2004) An autonomous security system using multi-flying robots. In: The 18th annual conference of the Japanese Society for Artificial Intelligence, 2C1-04 Hosoi K, Sugimoto M (2004) An autonomous security system using multi-flying robots. In: The 18th annual conference of the Japanese Society for Artificial Intelligence, 2C1-04
2.
Zurück zum Zitat Zhang H, Ostrowski JP (1999) Visual servoing with dynamics: control of unmanned blimp. In: Proceedings of IEEE international conference on robotics and automation, pp 618–623 Zhang H, Ostrowski JP (1999) Visual servoing with dynamics: control of unmanned blimp. In: Proceedings of IEEE international conference on robotics and automation, pp 618–623
3.
Zurück zum Zitat Yamada M, Taki Y, Funabashi Y (2010) Global position and attitude control of an airship system against a constant wind disturbance. Trans Jpn Soc Mech Eng C 76(767):1770–1779 Yamada M, Taki Y, Funabashi Y (2010) Global position and attitude control of an airship system against a constant wind disturbance. Trans Jpn Soc Mech Eng C 76(767):1770–1779
4.
Zurück zum Zitat Yu J, Liu L, Wang L, Tan M, Xu D (2008) Turning control of a multilink biomimetic robotic fish. IEEE Trans Robot 24(1):201–206CrossRef Yu J, Liu L, Wang L, Tan M, Xu D (2008) Turning control of a multilink biomimetic robotic fish. IEEE Trans Robot 24(1):201–206CrossRef
5.
Zurück zum Zitat Lighthill MJ (1960) Note on the swimming of slender sh. J FluidMech 9:305–317CrossRef Lighthill MJ (1960) Note on the swimming of slender sh. J FluidMech 9:305–317CrossRef
6.
Zurück zum Zitat Barrett D, Grosenbaugh M, Triantafyllou M (1996) The optimal control of a exible hull robotic undersea vehicle propelled by an oscillating foil. In: Proceedings of IEEE AUV symposium, pp 1–9 Barrett D, Grosenbaugh M, Triantafyllou M (1996) The optimal control of a exible hull robotic undersea vehicle propelled by an oscillating foil. In: Proceedings of IEEE AUV symposium, pp 1–9
7.
Zurück zum Zitat Shibata T, Wada K (2012) Robot theraphy: mental health care by using animal type robot (4. application technology supporting human activities, special issue, ICT for understanding human and his/her activities: from sensing and information technology to its applications). J IEICE 95(5):442–445 Shibata T, Wada K (2012) Robot theraphy: mental health care by using animal type robot (4. application technology supporting human activities, special issue, ICT for understanding human and his/her activities: from sensing and information technology to its applications). J IEICE 95(5):442–445
8.
Zurück zum Zitat Yu J, Wang L, Tan M (2007) Geometric optimization of relative link lengths for biomimetic robotic fish. IEEE Trans Robot 23(2) Yu J, Wang L, Tan M (2007) Geometric optimization of relative link lengths for biomimetic robotic fish. IEEE Trans Robot 23(2)
9.
Zurück zum Zitat Yu J, Wang L (2005) Parameter optimization of simplified propulsive model for biomimetic robot fish. In: Proceedings of the 2005 IEEE international conference on robotics and automation, ICRA 2005 Yu J, Wang L (2005) Parameter optimization of simplified propulsive model for biomimetic robot fish. In: Proceedings of the 2005 IEEE international conference on robotics and automation, ICRA 2005
Metadaten
Titel
Propulsion modeling of caudal fin driving system on balloon fish robot
verfasst von
Masato Haga
Masafumi Uchida
Publikationsdatum
17.10.2016
Verlag
Springer Japan
Erschienen in
Artificial Life and Robotics / Ausgabe 1/2017
Print ISSN: 1433-5298
Elektronische ISSN: 1614-7456
DOI
https://doi.org/10.1007/s10015-016-0328-z

Weitere Artikel der Ausgabe 1/2017

Artificial Life and Robotics 1/2017 Zur Ausgabe

Neuer Inhalt