Skip to main content
Erschienen in:

03.07.2021

Prospects for the Extensive Application of Hydrogen in Powder Metallurgy

verfasst von: A. S. Akhmetov, J. V. Eremeeva

Erschienen in: Metallurgist | Ausgabe 3-4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider actual problems of production, transportation, and storage of hydrogen and demonstrate the urgency and prospects of subsequent investigations and introduction of hydrogen-based technologies in powder metallurgy. We present predictions of an international organization according to which commercial mass production of hydrogen is expected in the nearest future. This will make hydrogen less costly and more available for the extensive applications in various branches of science and industry. It is indicated that hydrogen is not only a promising alternative energy carrier but also an efficient reducer for numerous metals and alloys and an element applied in various technologies of powder metallurgy aimed at getting broad ranges of high-quality products. It is assumed that hydrogen can find extensive applications in industry in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat P. Prathap and D. Senthilkumaran, “Reduction of environmental impact by incorporating performance oriented life cycle assessment,” Environ. Protect. Eng., 42, No. 1, 113–122 (2016).CrossRef P. Prathap and D. Senthilkumaran, “Reduction of environmental impact by incorporating performance oriented life cycle assessment,” Environ. Protect. Eng., 42, No. 1, 113–122 (2016).CrossRef
4.
Zurück zum Zitat T. Eglinton, J. Hinkley, A. Beath, and M. Dell’Amico, “Potential applications of concentrated solar thermal technologies in the Australian minerals processing and extractive metallurgical industry,” J. Miner. Met. Mater. Soc., 65, No. 12, 1710–1720 (2013); https://doi.org/10.1007/s11837-013-0707-z.CrossRef T. Eglinton, J. Hinkley, A. Beath, and M. Dell’Amico, “Potential applications of concentrated solar thermal technologies in the Australian minerals processing and extractive metallurgical industry,” J. Miner. Met. Mater. Soc., 65, No. 12, 1710–1720 (2013); https://​doi.​org/​10.​1007/​s11837-013-0707-z.CrossRef
5.
Zurück zum Zitat N. R. Neelameggham, “Soda fuel cycle metallurgy — choices for CO2 reduction,” in: N. R. Neelameggham and R. G. Reddy (editors), Carbon Dioxide Reduction Metallurgy, Metals and Materials Society (Tms) (2008), pp. 135–146. N. R. Neelameggham, “Soda fuel cycle metallurgy — choices for CO2 reduction,” in: N. R. Neelameggham and R. G. Reddy (editors), Carbon Dioxide Reduction Metallurgy, Metals and Materials Society (Tms) (2008), pp. 135–146.
7.
Zurück zum Zitat S. Tonomura, N. Kikuchi, N. Ishiwata, S. Tomisaki, and Y. Tomita, “Concept and current state of CO2 ultimate reduction in the steelmaking process (COURSE50) aimed at sustainability in the Japanese steel industry,” J. Sustain. Metall., 2, No. 3, 191–199 (2016); https://doi.org/10.1007/s40831-016-0066-4.CrossRef S. Tonomura, N. Kikuchi, N. Ishiwata, S. Tomisaki, and Y. Tomita, “Concept and current state of CO2 ultimate reduction in the steelmaking process (COURSE50) aimed at sustainability in the Japanese steel industry,” J. Sustain. Metall., 2, No. 3, 191–199 (2016); https://​doi.​org/​10.​1007/​s40831-016-0066-4.CrossRef
12.
Zurück zum Zitat C. Baumgart, C. Weigelt, A. Lißner, S. Martin, C. G. Aneziris, and L. Krüger, “Processing of 17Cr7Mn6Ni TRIP steel powder by extrusion at room temperature and pressureless sintering,” Adv. Eng. Mater., 22, No. 6 (2020). C. Baumgart, C. Weigelt, A. Lißner, S. Martin, C. G. Aneziris, and L. Krüger, “Processing of 17Cr7Mn6Ni TRIP steel powder by extrusion at room temperature and pressureless sintering,” Adv. Eng. Mater., 22, No. 6 (2020).
14.
Zurück zum Zitat M. Kundak, L. Lazic, and J. Crnko, “CO2 emissions in the steel industry,” Metalurgija, 48, No. 3, 193–197 (2009). M. Kundak, L. Lazic, and J. Crnko, “CO2 emissions in the steel industry,” Metalurgija, 48, No. 3, 193–197 (2009).
20.
Zurück zum Zitat N. Tenhumberg and K. Buker, “Ecological and economic evaluation of hydrogen production by different water electrolysis technologies,” Chem. Ing. Tech., 92, No. 2, 1–11 (2020). N. Tenhumberg and K. Buker, “Ecological and economic evaluation of hydrogen production by different water electrolysis technologies,” Chem. Ing. Tech., 92, No. 2, 1–11 (2020).
22.
Zurück zum Zitat Y. Mohassab, M. Elzohiery, and H. Y. Sohn, “Flash reduction of magnetite and hematite concentrates with hydrogen in a lab-scale reactor for a novel ironmaking process,” in: Proc. of the 7th Internat. Symp. on High-Temperature Metallurgical Processing (February 14–18, 2016, Downtown Nashville, Tennessee), Wiley (2016), pp. 3–10. Y. Mohassab, M. Elzohiery, and H. Y. Sohn, “Flash reduction of magnetite and hematite concentrates with hydrogen in a lab-scale reactor for a novel ironmaking process,” in: Proc. of the 7th Internat. Symp. on High-Temperature Metallurgical Processing (February 14–18, 2016, Downtown Nashville, Tennessee), Wiley (2016), pp. 3–10.
23.
Zurück zum Zitat Z.-F. Li, Y. Gao, G.-M. Cao, and Z.-Y. Liu, “High-efficiency reduction behavior for the oxide scale formed on hot-rolled steel in a mixed atmosphere of hydrogen and argon,” J. Mater. Sci., 55, No. 4, 1826–1839 (2020).CrossRef Z.-F. Li, Y. Gao, G.-M. Cao, and Z.-Y. Liu, “High-efficiency reduction behavior for the oxide scale formed on hot-rolled steel in a mixed atmosphere of hydrogen and argon,” J. Mater. Sci., 55, No. 4, 1826–1839 (2020).CrossRef
24.
Zurück zum Zitat N. M. Gaballah, A. F. Zikry, M. G. Khalifa, A. B. Farag, N. A. El-Hussiny, and M. E. H. Shalabi, “Kinetic reduction of mill scale via hydrogen,” Sci. Sinter., 46, No. 1, 107–116 (2014).CrossRef N. M. Gaballah, A. F. Zikry, M. G. Khalifa, A. B. Farag, N. A. El-Hussiny, and M. E. H. Shalabi, “Kinetic reduction of mill scale via hydrogen,” Sci. Sinter., 46, No. 1, 107–116 (2014).CrossRef
25.
Zurück zum Zitat Y. Z. Lang, R. R. Arnepalli, and A. Tiwari, “A review on hydrogen production: methods, materials and nanotechnology,” J. Nanosci. Nanotechnol., 11, No. 5, 3719–3739 (2011).CrossRef Y. Z. Lang, R. R. Arnepalli, and A. Tiwari, “A review on hydrogen production: methods, materials and nanotechnology,” J. Nanosci. Nanotechnol., 11, No. 5, 3719–3739 (2011).CrossRef
27.
Zurück zum Zitat F. Akagi and Y. Ishii, “Effects of anisotropy field dispersion and grain boundary on coercivity and squareness ratio for HDDR-processed NdFeB powders,” AIP Adv., 8, No. 5, 056201 (2018). F. Akagi and Y. Ishii, “Effects of anisotropy field dispersion and grain boundary on coercivity and squareness ratio for HDDR-processed NdFeB powders,” AIP Adv., 8, No. 5, 056201 (2018).
29.
Zurück zum Zitat H. R. Cha, J. G. Lee, Y. K. Baek, J. H. Yu, H. W. Kwon, and Y. D. Kim, “Synthesis of ultra-fine grained Nd–Fe–B magnetic powder by the control of DR speed during HDDR process,” Korean J. Met. Mater., 51, No. 5, 371–376 (2013).CrossRef H. R. Cha, J. G. Lee, Y. K. Baek, J. H. Yu, H. W. Kwon, and Y. D. Kim, “Synthesis of ultra-fine grained Nd–Fe–B magnetic powder by the control of DR speed during HDDR process,” Korean J. Met. Mater., 51, No. 5, 371–376 (2013).CrossRef
30.
Zurück zum Zitat S. K. Pal, K. Güth, T. G. Woodcock, L. Schultz, and O. Gutfleisch, “Properties of isolated single crystalline and textured polycrystalline nano/sub-micrometre Nd2Fe14B particles obtained from milling of HDDR powder,” J. Phys. D: Appl. Phys., 46, No. 37, 375004–375012 (2013).CrossRef S. K. Pal, K. Güth, T. G. Woodcock, L. Schultz, and O. Gutfleisch, “Properties of isolated single crystalline and textured polycrystalline nano/sub-micrometre Nd2Fe14B particles obtained from milling of HDDR powder,” J. Phys. D: Appl. Phys., 46, No. 37, 375004–375012 (2013).CrossRef
31.
Zurück zum Zitat V. I. Kostikov, V. Yu. Dorofeev, and Zh. V. Eremeeva, “Protective atmospheres in powder metallurgy,” Tekhnol. Met., No. 12, 30–33 (2007). V. I. Kostikov, V. Yu. Dorofeev, and Zh. V. Eremeeva, “Protective atmospheres in powder metallurgy,” Tekhnol. Met., No. 12, 30–33 (2007).
32.
Zurück zum Zitat V. I. Kostikov, V. Yu. Dorofeev, D. A. Chumak-Zhun’, A. P. Ul’yanovskii, Zh. V. Eremeeva, and D. L. Yaitskii, “Reduction of oxide films during consolidation of the charge used to make powder semifinished products,” Metallurg, No. 7, 55–57 (2008); English translation: Metallurgist, 52, 415–419 (2008). V. I. Kostikov, V. Yu. Dorofeev, D. A. Chumak-Zhun’, A. P. Ul’yanovskii, Zh. V. Eremeeva, and D. L. Yaitskii, “Reduction of oxide films during consolidation of the charge used to make powder semifinished products,” Metallurg, No. 7, 55–57 (2008); English translation: Metallurgist, 52, 415–419 (2008).
33.
Zurück zum Zitat L. Kral and J. Cermak, “Improvement of hydrogen storage properties of Mg by catalytic effect of Al-containing phases in Mg–Al–Ti–Zr–C powders,” Int. J. Hydrogen Energy, 44, No. 26, 13,561–13,568 (2019).CrossRef L. Kral and J. Cermak, “Improvement of hydrogen storage properties of Mg by catalytic effect of Al-containing phases in Mg–Al–Ti–Zr–C powders,” Int. J. Hydrogen Energy, 44, No. 26, 13,561–13,568 (2019).CrossRef
34.
Zurück zum Zitat Y.-C. Pan, J.-X. Zou, X.-Q. Zeng, and W.-J. Ding, “Hydrogen storage properties of Mg–TiO2 composite powder prepared by arc plasma method,” Trans. Nonferr. Met. Soc. China, 24, No. 12, 3834–3839 (2014).CrossRef Y.-C. Pan, J.-X. Zou, X.-Q. Zeng, and W.-J. Ding, “Hydrogen storage properties of Mg–TiO2 composite powder prepared by arc plasma method,” Trans. Nonferr. Met. Soc. China, 24, No. 12, 3834–3839 (2014).CrossRef
35.
Zurück zum Zitat M. Meyer and L. Mendoza-Zelis, “Mechanically alloyed Mg–Ni–Ti and Mg–Fe–Ti powders as hydrogen storage materials,” Int. J. Hydrogen Energy, 37, No. 19, 14,864–14,869 (2012).CrossRef M. Meyer and L. Mendoza-Zelis, “Mechanically alloyed Mg–Ni–Ti and Mg–Fe–Ti powders as hydrogen storage materials,” Int. J. Hydrogen Energy, 37, No. 19, 14,864–14,869 (2012).CrossRef
36.
Zurück zum Zitat A. A. Kovalevskii, A. S. Strogova, V. A. Labunov, and A. A. Shevchenok, “Nano- and microstructural silicon powders in the synthesis and storage of hydrogen,” in: Z. Bartul and J. Trenor (editors), Advances in Nanotechnology, Vol. 18, Chapter 5, pp. 173–189, Nova Science (2017). A. A. Kovalevskii, A. S. Strogova, V. A. Labunov, and A. A. Shevchenok, “Nano- and microstructural silicon powders in the synthesis and storage of hydrogen,” in: Z. Bartul and J. Trenor (editors), Advances in Nanotechnology, Vol. 18, Chapter 5, pp. 173–189, Nova Science (2017).
Metadaten
Titel
Prospects for the Extensive Application of Hydrogen in Powder Metallurgy
verfasst von
A. S. Akhmetov
J. V. Eremeeva
Publikationsdatum
03.07.2021
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 3-4/2021
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-021-01159-0

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.