Skip to main content

2013 | OriginalPaper | Buchkapitel

Protein Conformational Disorder and Enzyme Catalysis

verfasst von : Cindy Schulenburg, Donald Hilvert

Erschienen in: Dynamics in Enzyme Catalysis

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Though lacking a well-defined three-dimensional structure, intrinsically unstructured proteins are ubiquitous in nature. These molecules play crucial roles in many cellular processes, especially signaling and regulation. Surprisingly, even enzyme catalysis can tolerate substantial disorder. This observation contravenes conventional wisdom but is relevant to an understanding of how protein dynamics modulates enzyme function. This chapter reviews properties and characteristics of disordered proteins, emphasizing examples of enzymes that lack defined structures, and considers implications of structural disorder for catalytic efficiency and evolution.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Uversky VN (2011) Intrinsically disordered proteins from A to Z. Int J Biochem Cell Biol 43:1090–1103 Uversky VN (2011) Intrinsically disordered proteins from A to Z. Int J Biochem Cell Biol 43:1090–1103
2.
Zurück zum Zitat Fisher CK, Stultz CM (2011) Constructing ensembles for intrinsically disordered proteins. Curr Opin Struct Biol 21:426–431 Fisher CK, Stultz CM (2011) Constructing ensembles for intrinsically disordered proteins. Curr Opin Struct Biol 21:426–431
3.
Zurück zum Zitat Tompa P, Dosztanyi Z, Simon I (2006) Prevalent structural disorder in E. coli and S. cerevisiae proteomes. J Proteome Res 5:1996–2000 Tompa P, Dosztanyi Z, Simon I (2006) Prevalent structural disorder in E. coli and S. cerevisiae proteomes. J Proteome Res 5:1996–2000
4.
Zurück zum Zitat He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19:929–949 He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19:929–949
5.
Zurück zum Zitat Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci. 37: 509–516 Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci. 37: 509–516
6.
Zurück zum Zitat Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764 Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764
7.
Zurück zum Zitat Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384 Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384
8.
Zurück zum Zitat Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972 Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972
9.
Zurück zum Zitat Karplus M, McCammon JA (1981) The internal dynamics of globular proteins. CRC Crit Rev Biochem 9:293–349 Karplus M, McCammon JA (1981) The internal dynamics of globular proteins. CRC Crit Rev Biochem 9:293–349
10.
Zurück zum Zitat Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–916 Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–916
11.
Zurück zum Zitat Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9(Suppl 2):S1 Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9(Suppl 2):S1
12.
Zurück zum Zitat Romero P, Obradovic Z, Li XH, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42:38–48 Romero P, Obradovic Z, Li XH, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42:38–48
13.
Zurück zum Zitat Fitzkee NC, García-Moreno EB (2008) Electrostatic effects in unfolded staphylococcal nuclease. Protein Sci 17:216–227 Fitzkee NC, García-Moreno EB (2008) Electrostatic effects in unfolded staphylococcal nuclease. Protein Sci 17:216–227
14.
Zurück zum Zitat Mao AH, Crick SL, Vitalis A, Chicoine CL, Pappu RV (2010) Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc Natl Acad Sci USA 107:8183–8188 Mao AH, Crick SL, Vitalis A, Chicoine CL, Pappu RV (2010) Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc Natl Acad Sci USA 107:8183–8188
15.
Zurück zum Zitat Müller-Späth S, Soranno A, Hirschfeld V, Hofmann H, Rüegger S, Reymond L, Nettels D, Schuler B (2010) Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc Natl Acad Sci USA 107:14609–14614 Müller-Späth S, Soranno A, Hirschfeld V, Hofmann H, Rüegger S, Reymond L, Nettels D, Schuler B (2010) Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc Natl Acad Sci USA 107:14609–14614
16.
Zurück zum Zitat Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427 Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427
17.
Zurück zum Zitat Zambelli B, Musiani F, Benini S, Ciurli S (2011) Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Acc Chem Res 44:520–530 Zambelli B, Musiani F, Benini S, Ciurli S (2011) Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Acc Chem Res 44:520–530
18.
Zurück zum Zitat Morillas M, Eberl H, Allain FH-T, Glockshuber R, Kuennemann E (2008) Novel enzymatic activity derived from the Semliki Forest virus capsid protein. J Mol Biol 376:721–735 Morillas M, Eberl H, Allain FH-T, Glockshuber R, Kuennemann E (2008) Novel enzymatic activity derived from the Semliki Forest virus capsid protein. J Mol Biol 376:721–735
19.
Zurück zum Zitat Abian O, Vega S, Neira JL, Velazquez-Campoy A (2010) Conformational stability of hepatitis C virus NS3 protease. Biophys J 99:3811–3820 Abian O, Vega S, Neira JL, Velazquez-Campoy A (2010) Conformational stability of hepatitis C virus NS3 protease. Biophys J 99:3811–3820
20.
Zurück zum Zitat Butz M, Neuenschwander M, Kast P, Hilvert D (2011) An N-terminal protein degradation tag enables robust selection of highly active enzymes. Biochemistry 50:8594–8602 Butz M, Neuenschwander M, Kast P, Hilvert D (2011) An N-terminal protein degradation tag enables robust selection of highly active enzymes. Biochemistry 50:8594–8602
21.
Zurück zum Zitat Cardamone M, Puri NK (1992) Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem J 282(Pt 2):589–593 Cardamone M, Puri NK (1992) Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem J 282(Pt 2):589–593
22.
Zurück zum Zitat Receveur-Bréchot V, Durand D (2011) How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Peptide Sci 13:55–75 Receveur-Bréchot V, Durand D (2011) How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Peptide Sci 13:55–75
23.
Zurück zum Zitat Bernadó P, Modig K, Grela P, Svergun DI, Tchorzewski M, Pons M, Akke M (2010) Structure and dynamics of ribosomal protein L12: an ensemble model based on SAXS and NMR relaxation. Biophys J 98:2374–2382 Bernadó P, Modig K, Grela P, Svergun DI, Tchorzewski M, Pons M, Akke M (2010) Structure and dynamics of ribosomal protein L12: an ensemble model based on SAXS and NMR relaxation. Biophys J 98:2374–2382
24.
Zurück zum Zitat Pervushin K, Vamvaca K, Vögeli B, Hilvert D (2007) Structure and dynamics of a molten globular enzyme. Nat Struct Mol Biol 14:1202–1206 Pervushin K, Vamvaca K, Vögeli B, Hilvert D (2007) Structure and dynamics of a molten globular enzyme. Nat Struct Mol Biol 14:1202–1206
25.
Zurück zum Zitat Mittag T, Forman-Kay JD (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17:3–14 Mittag T, Forman-Kay JD (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17:3–14
26.
Zurück zum Zitat Bernadó P, Svergun DI (2011) Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol Biosyst 8:151–167 Bernadó P, Svergun DI (2011) Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol Biosyst 8:151–167
27.
Zurück zum Zitat Zambelli B, Stola M, Musiani F, De Vriendt K, Samyn B, Devreese B, Van Beeumen J, Turano P, Dikiy A, Bryant DA et al (2005) UreG, a chaperone in the urease assembly process, is an intrinsically unstructured GTPase that specifically binds Zn2+. J Biol Chem 280: 4684–4695 Zambelli B, Stola M, Musiani F, De Vriendt K, Samyn B, Devreese B, Van Beeumen J, Turano P, Dikiy A, Bryant DA et al (2005) UreG, a chaperone in the urease assembly process, is an intrinsically unstructured GTPase that specifically binds Zn2+. J Biol Chem 280: 4684–4695
28.
Zurück zum Zitat Zotter Á, Oláh J, Hlavanda E, Bodor A, Perczel A, Szigeti K, Fidy J, Ovádi J (2011) Zn2+-induced rearrangement of the disordered TPPP/p25 affects its microtubule assembly and GTPase activity. Biochemistry 50:9568–9578 Zotter Á, Oláh J, Hlavanda E, Bodor A, Perczel A, Szigeti K, Fidy J, Ovádi J (2011) Zn2+-induced rearrangement of the disordered TPPP/p25 affects its microtubule assembly and GTPase activity. Biochemistry 50:9568–9578
29.
Zurück zum Zitat Fitzkee NC, Masse JE, Shen Y, Davies DR, Bax A (2010) Solution conformation and dynamics of the HIV-1 integrase core domain. J Biol Chem 285:18072–18084 Fitzkee NC, Masse JE, Shen Y, Davies DR, Bax A (2010) Solution conformation and dynamics of the HIV-1 integrase core domain. J Biol Chem 285:18072–18084
30.
Zurück zum Zitat Fitzkee NC, Torchia DA, Bax A (2011) Measuring rapid hydrogen exchange in the homodimeric 36 kDa HIV-1 integrase catalytic core domain. Protein Sci 20:500–512 Fitzkee NC, Torchia DA, Bax A (2011) Measuring rapid hydrogen exchange in the homodimeric 36 kDa HIV-1 integrase catalytic core domain. Protein Sci 20:500–512
31.
Zurück zum Zitat Galea CA, Wang Y, Sivakolundu SG, Kriwacki RW (2008) Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47:7598–7609 Galea CA, Wang Y, Sivakolundu SG, Kriwacki RW (2008) Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47:7598–7609
32.
Zurück zum Zitat Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331 Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331
33.
Zurück zum Zitat Tantos A, Han KH, Tompa P (2012) Intrinsic disorder in cell signaling and gene transcription. Mol Cell Endocrinol 348:457–465 Tantos A, Han KH, Tompa P (2012) Intrinsic disorder in cell signaling and gene transcription. Mol Cell Endocrinol 348:457–465
34.
Zurück zum Zitat Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246 Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246
35.
Zurück zum Zitat Chakrabortee S, Meersman F, Kaminski Schierle GS, Bertoncini CW, McGee B, Kaminski CF, Tunnacliffe A (2010) Catalytic and chaperone-like functions in an intrinsically disordered protein associated with desiccation tolerance. Proc Natl Acad Sci USA 107: 16084–16089 Chakrabortee S, Meersman F, Kaminski Schierle GS, Bertoncini CW, McGee B, Kaminski CF, Tunnacliffe A (2010) Catalytic and chaperone-like functions in an intrinsically disordered protein associated with desiccation tolerance. Proc Natl Acad Sci USA 107: 16084–16089
36.
Zurück zum Zitat Reichmann D, Xu Y, Cremers CM, Ilbert M, Mittelman R, Fitzgerald MC, Jakob U (2012) Order out of disorder: working cycle of an intrinsically unfolded chaperone. Cell 148: 947–957 Reichmann D, Xu Y, Cremers CM, Ilbert M, Mittelman R, Fitzgerald MC, Jakob U (2012) Order out of disorder: working cycle of an intrinsically unfolded chaperone. Cell 148: 947–957
37.
Zurück zum Zitat Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18:1169–1175 Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18:1169–1175
38.
Zurück zum Zitat Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19:31–38 Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19:31–38
39.
Zurück zum Zitat Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol 338:1015–1026 Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol 338:1015–1026
40.
Zurück zum Zitat Tsai CD, Ma B, Kumar S, Wolfson H, Nussinov R (2001) Protein folding: binding of conformationally fluctuating building blocks via population selection. Crit Rev Biochem Mol Biol 36:399–433 Tsai CD, Ma B, Kumar S, Wolfson H, Nussinov R (2001) Protein folding: binding of conformationally fluctuating building blocks via population selection. Crit Rev Biochem Mol Biol 36:399–433
41.
Zurück zum Zitat Kiefhaber T, Bachmann A, Jensen KS (2012) Dynamics and mechanisms of coupled protein folding and binding reactions. Curr Opin Struct Biol 22:21–29 Kiefhaber T, Bachmann A, Jensen KS (2012) Dynamics and mechanisms of coupled protein folding and binding reactions. Curr Opin Struct Biol 22:21–29
42.
Zurück zum Zitat Receveur-Brechot V, Bourhis JM, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins 62:24–45 Receveur-Brechot V, Bourhis JM, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins 62:24–45
43.
Zurück zum Zitat Borriello A, Cucciolla V, Oliva A, Zappia V, Della Ragione F (2007) p27Kip1 metabolism: a fascinating labyrinth. Cell Cycle 6:1053–1061 Borriello A, Cucciolla V, Oliva A, Zappia V, Della Ragione F (2007) p27Kip1 metabolism: a fascinating labyrinth. Cell Cycle 6:1053–1061
44.
Zurück zum Zitat Lowry DF, Hausrath AC, Daughdrill GW (2008) A robust approach for analyzing a heterogeneous structural ensemble. Proteins 73:918–928 Lowry DF, Hausrath AC, Daughdrill GW (2008) A robust approach for analyzing a heterogeneous structural ensemble. Proteins 73:918–928
45.
Zurück zum Zitat Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025 Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025
46.
Zurück zum Zitat Turjanski AG, Gutkind JS, Best RB, Hummer G (2008) Binding-induced folding of a natively unstructured transcription factor. PLoS Comput Biol 4:e1000060 Turjanski AG, Gutkind JS, Best RB, Hummer G (2008) Binding-induced folding of a natively unstructured transcription factor. PLoS Comput Biol 4:e1000060
47.
Zurück zum Zitat Espinoza-Fonseca LM (2009) Reconciling binding mechanisms of intrinsically disordered proteins. Biochem Biophys Res Commun 382:479–482 Espinoza-Fonseca LM (2009) Reconciling binding mechanisms of intrinsically disordered proteins. Biochem Biophys Res Commun 382:479–482
48.
Zurück zum Zitat Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9(Suppl 1):S1 Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9(Suppl 1):S1
49.
Zurück zum Zitat Schreiber G, Keating AE (2011) Protein binding specificity versus promiscuity. Curr Opin Struct Biol 21:50–61 Schreiber G, Keating AE (2011) Protein binding specificity versus promiscuity. Curr Opin Struct Biol 21:50–61
50.
Zurück zum Zitat Taira N, Yoshida K (2012) Post-translational modifications of p53 tumor suppressor: determinants of its functional targets. Histol Histopathol 27:437–443 Taira N, Yoshida K (2012) Post-translational modifications of p53 tumor suppressor: determinants of its functional targets. Histol Histopathol 27:437–443
51.
Zurück zum Zitat Vuzman D, Levy Y (2012) Intrinsically disordered regions as affinity tuners in protein-DNA interactions. Mol Biosyst 8:47–57 Vuzman D, Levy Y (2012) Intrinsically disordered regions as affinity tuners in protein-DNA interactions. Mol Biosyst 8:47–57
52.
Zurück zum Zitat Shoemaker BA, Portman JJ, Wolynes PG (2000) Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci USA 97:8868–8873 Shoemaker BA, Portman JJ, Wolynes PG (2000) Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci USA 97:8868–8873
53.
Zurück zum Zitat Huang Y, Liu Z (2009) Kinetic advantage of intrinsically disordered proteins in coupled folding–binding process: a critical assessment of the “fly-casting” mechanism. J Mol Biol 393:1143–1159 Huang Y, Liu Z (2009) Kinetic advantage of intrinsically disordered proteins in coupled folding–binding process: a critical assessment of the “fly-casting” mechanism. J Mol Biol 393:1143–1159
54.
Zurück zum Zitat Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15:35–41 Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15:35–41
55.
Zurück zum Zitat Patil A, Kinoshita K, Nakamura H (2010) Domain distribution and intrinsic disorder in hubs in the human protein–protein interaction network. Protein Sci 19:1461–1468 Patil A, Kinoshita K, Nakamura H (2010) Domain distribution and intrinsic disorder in hubs in the human protein–protein interaction network. Protein Sci 19:1461–1468
56.
Zurück zum Zitat Singh GP, Ganapathi M, Dash D (2007) Role of intrinsic disorder in transient interactions of hub proteins. Proteins 66:761–765 Singh GP, Ganapathi M, Dash D (2007) Role of intrinsic disorder in transient interactions of hub proteins. Proteins 66:761–765
57.
Zurück zum Zitat Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148 Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148
58.
Zurück zum Zitat Pauling L (1948) Nature of forces between large molecules of biological interest. Nature 161: 707–709 Pauling L (1948) Nature of forces between large molecules of biological interest. Nature 161: 707–709
59.
Zurück zum Zitat Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44:98–104 Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44:98–104
60.
Zurück zum Zitat Koshland DE (1994) The key-lock theory and the induced fit theory. Angew Chem Int Ed Engl 33:2375–2378 Koshland DE (1994) The key-lock theory and the induced fit theory. Angew Chem Int Ed Engl 33:2375–2378
61.
Zurück zum Zitat Hammes GG, Benkovic SJ, Hammes-Schiffer S (2011) Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. Biochemistry 50:10422–10430 Hammes GG, Benkovic SJ, Hammes-Schiffer S (2011) Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. Biochemistry 50:10422–10430
62.
Zurück zum Zitat Redko Y, Tock MR, Adams CJ, Kaberdin VR, Grasby JA, McDowall KJ (2003) Determination of the catalytic parameters of the N-terminal half of Escherichia coli ribonuclease E and the identification of critical functional groups in RNA substrates. J Biol Chem 278: 44001–44008 Redko Y, Tock MR, Adams CJ, Kaberdin VR, Grasby JA, McDowall KJ (2003) Determination of the catalytic parameters of the N-terminal half of Escherichia coli ribonuclease E and the identification of critical functional groups in RNA substrates. J Biol Chem 278: 44001–44008
63.
Zurück zum Zitat Zhang RM, Durkin J, Windsor WT, McNemar C, Ramanathan L, Le HV (1997) Probing the substrate specificity of hepatitis C virus NS3 serine protease by using synthetic peptides. J Virol 71:6208–6213 Zhang RM, Durkin J, Windsor WT, McNemar C, Ramanathan L, Le HV (1997) Probing the substrate specificity of hepatitis C virus NS3 serine protease by using synthetic peptides. J Virol 71:6208–6213
64.
Zurück zum Zitat Zambelli B, Musiani F, Savini M, Tucker P, Ciurli S (2007) Biochemical studies on Mycobacterium tuberculosis UreG and comparative modeling reveal structural and functional conservation among the bacterial UreG family. Biochemistry 46:3171–3182 Zambelli B, Musiani F, Savini M, Tucker P, Ciurli S (2007) Biochemical studies on Mycobacterium tuberculosis UreG and comparative modeling reveal structural and functional conservation among the bacterial UreG family. Biochemistry 46:3171–3182
65.
Zurück zum Zitat Kaberdin VR, Miczak A, Jakobsen JS, Lin-Chao S, McDowall KJ, von Gabain A (1998) The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc Natl Acad Sci USA 95:11637–11642 Kaberdin VR, Miczak A, Jakobsen JS, Lin-Chao S, McDowall KJ, von Gabain A (1998) The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc Natl Acad Sci USA 95:11637–11642
66.
Zurück zum Zitat Callaghan AJ, Aurikko JP, Ilag LL, Günter Grossmann J, Chandran V, Kühnel K, Poljak L, Carpousis AJ, Robinson CV, Symmons MF et al (2004) Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E. J Mol Biol 340:965–979 Callaghan AJ, Aurikko JP, Ilag LL, Günter Grossmann J, Chandran V, Kühnel K, Poljak L, Carpousis AJ, Robinson CV, Symmons MF et al (2004) Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E. J Mol Biol 340:965–979
67.
Zurück zum Zitat Carpousis AJ (2007) The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol 61:71–87 Carpousis AJ (2007) The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol 61:71–87
68.
Zurück zum Zitat Tedbury PR, Harris M (2007) Characterisation of the role of zinc in the hepatitis C virus NS2/3 auto-cleavage and NS3 protease activities. J Mol Biol 366:1652–1660 Tedbury PR, Harris M (2007) Characterisation of the role of zinc in the hepatitis C virus NS2/3 auto-cleavage and NS3 protease activities. J Mol Biol 366:1652–1660
69.
Zurück zum Zitat Zambelli B, Cremades N, Neyroz P, Turano P, Uversky VN, Ciurli S (2012) Insights in the (un)structural organization of Bacillus pasteurii UreG, an intrinsically disordered GTPase enzyme. Mol Biosyst 8:220–228 Zambelli B, Cremades N, Neyroz P, Turano P, Uversky VN, Ciurli S (2012) Insights in the (un)structural organization of Bacillus pasteurii UreG, an intrinsically disordered GTPase enzyme. Mol Biosyst 8:220–228
70.
Zurück zum Zitat Patil A, Kinoshita K, Nakamura H (2010) Hub promiscuity in protein–protein interaction networks. Int J Mol Sci 11:1930–1943 Patil A, Kinoshita K, Nakamura H (2010) Hub promiscuity in protein–protein interaction networks. Int J Mol Sci 11:1930–1943
71.
Zurück zum Zitat Tirián L, Hlavanda E, Oláh J, Horváth I, Orosz F, Szabó B, Kovács J, Szabad J, Ovádi J (2003) TPPP/p25 promotes tubulin assemblies and blocks mitotic spindle formation. Proc Natl Acad Sci USA 100:13976–13981 Tirián L, Hlavanda E, Oláh J, Horváth I, Orosz F, Szabó B, Kovács J, Szabad J, Ovádi J (2003) TPPP/p25 promotes tubulin assemblies and blocks mitotic spindle formation. Proc Natl Acad Sci USA 100:13976–13981
72.
Zurück zum Zitat Ovádi J, Orosz F (2009) An unstructured protein with destructive potential: TPPP/p25 in neurodegeneration. Bioessays 31:676–686 Ovádi J, Orosz F (2009) An unstructured protein with destructive potential: TPPP/p25 in neurodegeneration. Bioessays 31:676–686
73.
Zurück zum Zitat Hlavanda E, Kovács J, Oláh J, Orosz F, Medzihradszky KF, Ovádi J (2002) Brain-specific p25 protein binds to tubulin and microtubules and induces aberrant microtubule assemblies at substoichiometric concentrations. Biochemistry 41:8657–8664 Hlavanda E, Kovács J, Oláh J, Orosz F, Medzihradszky KF, Ovádi J (2002) Brain-specific p25 protein binds to tubulin and microtubules and induces aberrant microtubule assemblies at substoichiometric concentrations. Biochemistry 41:8657–8664
74.
Zurück zum Zitat Kovács GG, László L, Kovács J, Jensen PH, Lindersson E, Botond G, Molnár T, Perczel A, Hudecz F, Mezo G et al (2004) Natively unfolded tubulin polymerization promoting protein TPPP/p25 is a common marker of alpha-synucleinopathies. Neurobiol Dis 17:155–162 Kovács GG, László L, Kovács J, Jensen PH, Lindersson E, Botond G, Molnár T, Perczel A, Hudecz F, Mezo G et al (2004) Natively unfolded tubulin polymerization promoting protein TPPP/p25 is a common marker of alpha-synucleinopathies. Neurobiol Dis 17:155–162
75.
Zurück zum Zitat Fink AL, Calciano LJ, Goto Y, Kurotsu T, Palleros DR (1994) Classification of acid denaturation of proteins: intermediates and unfolded states. Biochemistry 33:12504–12511 Fink AL, Calciano LJ, Goto Y, Kurotsu T, Palleros DR (1994) Classification of acid denaturation of proteins: intermediates and unfolded states. Biochemistry 33:12504–12511
76.
Zurück zum Zitat Bemporad F, Gsponer J, Hopearuoho HI, Plakoutsi G, Stati G, Stefani M, Taddei N, Vendruscolo M, Chiti F (2008) Biological function in a non-native partially folded state of a protein. EMBO J 27:1525–1535 Bemporad F, Gsponer J, Hopearuoho HI, Plakoutsi G, Stati G, Stefani M, Taddei N, Vendruscolo M, Chiti F (2008) Biological function in a non-native partially folded state of a protein. EMBO J 27:1525–1535
77.
Zurück zum Zitat Punchihewa C, Dai J, Carver M, Yang D (2007) Human topoisomerase I C-terminal domain fragment containing the active site tyrosine is a molten globule: implication for the formation of competent productive complex. J Struct Biol 159:111–121 Punchihewa C, Dai J, Carver M, Yang D (2007) Human topoisomerase I C-terminal domain fragment containing the active site tyrosine is a molten globule: implication for the formation of competent productive complex. J Struct Biol 159:111–121
78.
Zurück zum Zitat Stewart L, Ireton GC, Champoux JJ (1997) Reconstitution of human topoisomerase I by fragment complementation. J Mol Biol 269:355–372 Stewart L, Ireton GC, Champoux JJ (1997) Reconstitution of human topoisomerase I by fragment complementation. J Mol Biol 269:355–372
79.
Zurück zum Zitat Olsson U, Wolf-Watz M (2010) Overlap between folding and functional energy landscapes for adenylate kinase conformational change. Nat Commun 1:111 Olsson U, Wolf-Watz M (2010) Overlap between folding and functional energy landscapes for adenylate kinase conformational change. Nat Commun 1:111
80.
Zurück zum Zitat Kiefhaber T, Schmid FX, Willaert K, Engelborghs Y, Chaffotte A (1992) Structure of a rapidly formed intermediate in ribonuclease T1 folding. Protein Sci 1:1162–1172 Kiefhaber T, Schmid FX, Willaert K, Engelborghs Y, Chaffotte A (1992) Structure of a rapidly formed intermediate in ribonuclease T1 folding. Protein Sci 1:1162–1172
81.
Zurück zum Zitat Ptitsyn OB, Pain RH, Semisotnov GV, Zerovnik E, Razgulyaev OI (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett 262:20–24 Ptitsyn OB, Pain RH, Semisotnov GV, Zerovnik E, Razgulyaev OI (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett 262:20–24
82.
Zurück zum Zitat Goldberg ME, Semisotnov GV, Friguet B, Kuwajima K, Ptitsyn OB, Sugai S (1990) An early immunoreactive folding intermediate of the tryptophan synthease beta 2 subunit is a ‘molten globule’. FEBS Lett 263:51–56 Goldberg ME, Semisotnov GV, Friguet B, Kuwajima K, Ptitsyn OB, Sugai S (1990) An early immunoreactive folding intermediate of the tryptophan synthease beta 2 subunit is a ‘molten globule’. FEBS Lett 263:51–56
83.
Zurück zum Zitat Creighton TE (1997) How important is the molten globule for correct protein folding? Trends Biochem Sci 22:6–10 Creighton TE (1997) How important is the molten globule for correct protein folding? Trends Biochem Sci 22:6–10
84.
Zurück zum Zitat Hu J, Li D, Su X-D, Jin C, Xia B (2010) Solution structure and conformational heterogeneity of acylphosphatase from Bacillus subtilis. FEBS Lett 584:2852–2856 Hu J, Li D, Su X-D, Jin C, Xia B (2010) Solution structure and conformational heterogeneity of acylphosphatase from Bacillus subtilis. FEBS Lett 584:2852–2856
85.
Zurück zum Zitat Schmid FX, Blaschek H (1981) A native-like intermediate on the ribonuclease A folding pathway. 2. Comparison of its properties to native ribonuclease A. Eur J Biochem 114: 111–117 Schmid FX, Blaschek H (1981) A native-like intermediate on the ribonuclease A folding pathway. 2. Comparison of its properties to native ribonuclease A. Eur J Biochem 114: 111–117
86.
Zurück zum Zitat Protasova NY, Kireeva ML, Murzina NV, Murzin AG, Uversky VN, Gryaznova OI, Gudkov AT (1994) Circularly permuted dihydrofolate-reductase of Escherichia coli has functional activity and a destabilized tertiary structure. Protein Eng 7:1373–1377 Protasova NY, Kireeva ML, Murzina NV, Murzin AG, Uversky VN, Gryaznova OI, Gudkov AT (1994) Circularly permuted dihydrofolate-reductase of Escherichia coli has functional activity and a destabilized tertiary structure. Protein Eng 7:1373–1377
87.
Zurück zum Zitat Smith VF, Matthews CR (2001) Testing the role of chain connectivity on the stability and structure of dihydrofolate reductase from E. coli: fragment complementation and circular permutation reveal stable, alternatively folded forms. Protein Sci 10:116–128 Smith VF, Matthews CR (2001) Testing the role of chain connectivity on the stability and structure of dihydrofolate reductase from E. coli: fragment complementation and circular permutation reveal stable, alternatively folded forms. Protein Sci 10:116–128
88.
Zurück zum Zitat Zhang H, Huang S, Feng Y, Guo P, Jing G (2005) Effect of N-terminal deletions on the foldability, stability, and activity of staphylococcal nuclease. Arch Biochem Biophys 441: 123–131 Zhang H, Huang S, Feng Y, Guo P, Jing G (2005) Effect of N-terminal deletions on the foldability, stability, and activity of staphylococcal nuclease. Arch Biochem Biophys 441: 123–131
89.
Zurück zum Zitat Li Y, Jing G (2000) Double point mutant F34W/W140F of staphylococcal nuclease is in a molten globule state but highly competent to fold into a functional conformation. J Biochem 128:739–744 Li Y, Jing G (2000) Double point mutant F34W/W140F of staphylococcal nuclease is in a molten globule state but highly competent to fold into a functional conformation. J Biochem 128:739–744
90.
Zurück zum Zitat Huang S, Yin J, Feng Y, Jing G (2003) Effect of a specific hydrogen bond (N138ND2-Q106O) on conformational integrity, stability, and activity of staphylococcal nuclease. Arch Biochem Biophys 420:87–94 Huang S, Yin J, Feng Y, Jing G (2003) Effect of a specific hydrogen bond (N138ND2-Q106O) on conformational integrity, stability, and activity of staphylococcal nuclease. Arch Biochem Biophys 420:87–94
91.
Zurück zum Zitat Shortle D, Meeker AK (1989) Residual structure in large fragments of staphylococcal nuclease: effects of amino acid substitutions. Biochemistry 28:936–944 Shortle D, Meeker AK (1989) Residual structure in large fragments of staphylococcal nuclease: effects of amino acid substitutions. Biochemistry 28:936–944
92.
Zurück zum Zitat Alexandrescu AT, Dames SA, Wiltscheck R (1996) A fragment of staphylococcal nuclease with an OB-fold structure shows hydrogen-exchange protection factors in the range reported for “molten globules”. Protein Sci 5:1942–1946 Alexandrescu AT, Dames SA, Wiltscheck R (1996) A fragment of staphylococcal nuclease with an OB-fold structure shows hydrogen-exchange protection factors in the range reported for “molten globules”. Protein Sci 5:1942–1946
93.
Zurück zum Zitat Sullivan BJ, Durani V, Magliery TJ (2011) Triosephosphate isomerase by consensus design: dramatic differences in physical properties and activity of related variants. J Mol Biol 413: 195–208 Sullivan BJ, Durani V, Magliery TJ (2011) Triosephosphate isomerase by consensus design: dramatic differences in physical properties and activity of related variants. J Mol Biol 413: 195–208
94.
Zurück zum Zitat MacBeath G, Kast P, Hilvert D (1998) Redesigning enzyme topology by directed evolution. Science 279:1958–1961 MacBeath G, Kast P, Hilvert D (1998) Redesigning enzyme topology by directed evolution. Science 279:1958–1961
95.
Zurück zum Zitat Schnell JR, Dyson HJ, Wright PE (2004) Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu Rev Biophys Biomol Struct 33:119–140 Schnell JR, Dyson HJ, Wright PE (2004) Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu Rev Biophys Biomol Struct 33:119–140
96.
Zurück zum Zitat Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–1642 Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–1642
97.
Zurück zum Zitat Sawaya MR, Kraut J (1997) Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36: 586–603 Sawaya MR, Kraut J (1997) Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36: 586–603
98.
Zurück zum Zitat Iwakura M (1998) In search of circular permuted variants of Escherichia coli dihydrofolate reductase. Biosci Biotechnol Biochem 62:778–781 Iwakura M (1998) In search of circular permuted variants of Escherichia coli dihydrofolate reductase. Biosci Biotechnol Biochem 62:778–781
99.
Zurück zum Zitat Hu Z, Bowen D, Southerland WM, del Sol A, Pan Y, Nussinov R, Ma B (2007) Ligand binding and circular permutation modify residue interaction network in DHFR. PLoS Comput Biol 3:e117 Hu Z, Bowen D, Southerland WM, del Sol A, Pan Y, Nussinov R, Ma B (2007) Ligand binding and circular permutation modify residue interaction network in DHFR. PLoS Comput Biol 3:e117
100.
Zurück zum Zitat Svensson A-KE, Zitzewitz JA, Matthews CR, Smith VF (2006) The relationship between chain connectivity and domain stability in the equilibrium and kinetic folding mechanisms of dihydrofolate reductase from E. coli. Protein Eng Des Sel 19:175–185 Svensson A-KE, Zitzewitz JA, Matthews CR, Smith VF (2006) The relationship between chain connectivity and domain stability in the equilibrium and kinetic folding mechanisms of dihydrofolate reductase from E. coli. Protein Eng Des Sel 19:175–185
101.
Zurück zum Zitat Uversky VN, Kutyshenko VP, Protasova NY, Rogov VV, Vassilenko KS, Gudkov AT (1996) Circularly permuted dihydrofolate reductase possesses all the properties of the molten globule state, but can resume functional tertiary structure by interaction with its ligands. Protein Sci 5:1844–1851 Uversky VN, Kutyshenko VP, Protasova NY, Rogov VV, Vassilenko KS, Gudkov AT (1996) Circularly permuted dihydrofolate reductase possesses all the properties of the molten globule state, but can resume functional tertiary structure by interaction with its ligands. Protein Sci 5:1844–1851
102.
Zurück zum Zitat Flanagan JM, Kataoka M, Shortle D, Engelman DM (1992) Truncated staphylococcal nuclease is compact but disordered. Proc Natl Acad Sci USA 89:748–752 Flanagan JM, Kataoka M, Shortle D, Engelman DM (1992) Truncated staphylococcal nuclease is compact but disordered. Proc Natl Acad Sci USA 89:748–752
103.
Zurück zum Zitat Ermácora MR, Ledman DW, Fox RO (1996) Mapping the structure of a non-native state of staphylococcal nuclease. Nat Struct Biol 3:59–66 Ermácora MR, Ledman DW, Fox RO (1996) Mapping the structure of a non-native state of staphylococcal nuclease. Nat Struct Biol 3:59–66
104.
Zurück zum Zitat Alexandrescu AT, Jahnke W, Wiltscheck R, Blommers MJ (1996) Accretion of structure in staphylococcal nuclease: an 15N NMR relaxation study. J Mol Biol 260:570–587 Alexandrescu AT, Jahnke W, Wiltscheck R, Blommers MJ (1996) Accretion of structure in staphylococcal nuclease: an 15N NMR relaxation study. J Mol Biol 260:570–587
105.
Zurück zum Zitat MacBeath G, Kast P, Hilvert D (1998) A small, thermostable, and monofunctional chorismate mutase from the archaeon Methanococcus jannaschii. Biochemistry 37: 10062–10073 MacBeath G, Kast P, Hilvert D (1998) A small, thermostable, and monofunctional chorismate mutase from the archaeon Methanococcus jannaschii. Biochemistry 37: 10062–10073
106.
Zurück zum Zitat Vamvaca K, Vögeli B, Kast P, Pervushin K, Hilvert D (2004) An enzymatic molten globule: efficient coupling of folding and catalysis. Proc Natl Acad Sci USA 101:12860–12864 Vamvaca K, Vögeli B, Kast P, Pervushin K, Hilvert D (2004) An enzymatic molten globule: efficient coupling of folding and catalysis. Proc Natl Acad Sci USA 101:12860–12864
107.
Zurück zum Zitat Vamvaca K, Jelesarov I, Hilvert D (2008) Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart. J Mol Biol 382:971–977 Vamvaca K, Jelesarov I, Hilvert D (2008) Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart. J Mol Biol 382:971–977
108.
Zurück zum Zitat Nagel ZD, Klinman JP (2009) A 21st century revisionist’s view at a turning point in enzymology. Nat Chem Biol 5:543–550 Nagel ZD, Klinman JP (2009) A 21st century revisionist’s view at a turning point in enzymology. Nat Chem Biol 5:543–550
109.
Zurück zum Zitat Nashine VC, Hammes-Schiffer S, Benkovic SJ (2010) Coupled motions in enzyme catalysis. Curr Opin Chem Biol 14:644–651 Nashine VC, Hammes-Schiffer S, Benkovic SJ (2010) Coupled motions in enzyme catalysis. Curr Opin Chem Biol 14:644–651
110.
Zurück zum Zitat Bhabha G, Lee J, Ekiert DC, Gam J, Wilson IA, Dyson HJ, Benkovic SJ, Wright PE (2011) A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332:234–238 Bhabha G, Lee J, Ekiert DC, Gam J, Wilson IA, Dyson HJ, Benkovic SJ, Wright PE (2011) A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332:234–238
111.
Zurück zum Zitat Adamczyk AJ, Cao J, Kamerlin SCL, Warshel A (2011) Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions. Proc Natl Acad Sci USA 108:14115–14120 Adamczyk AJ, Cao J, Kamerlin SCL, Warshel A (2011) Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions. Proc Natl Acad Sci USA 108:14115–14120
112.
Zurück zum Zitat Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M et al (2007) Intrinsic motions along an enzymatic reaction trajectory. Nature 450:838–844 Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M et al (2007) Intrinsic motions along an enzymatic reaction trajectory. Nature 450:838–844
113.
Zurück zum Zitat Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106:3210–3235 Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106:3210–3235
114.
Zurück zum Zitat Loveridge EJ, Behiry EM, Guo J, Allemann RK (2012) Evidence that a ‘dynamic knockout’ in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis. Nat Chem 4:292–297 Loveridge EJ, Behiry EM, Guo J, Allemann RK (2012) Evidence that a ‘dynamic knockout’ in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis. Nat Chem 4:292–297
115.
Zurück zum Zitat Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640 Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640
116.
Zurück zum Zitat Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121 Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121
117.
Zurück zum Zitat Schramm VL (1998) Enzymatic transition states and transition state analog design. Annu Rev Biochem 67:693–720 Schramm VL (1998) Enzymatic transition states and transition state analog design. Annu Rev Biochem 67:693–720
118.
Zurück zum Zitat Torbeev VY, Raghuraman H, Hamelberg D, Tonelli M, Westler WM, Perozo E, Kent SB (2011) Protein conformational dynamics in the mechanism of HIV-1 protease catalysis. Proc Natl Acad Sci USA 108:20982–20987 Torbeev VY, Raghuraman H, Hamelberg D, Tonelli M, Westler WM, Perozo E, Kent SB (2011) Protein conformational dynamics in the mechanism of HIV-1 protease catalysis. Proc Natl Acad Sci USA 108:20982–20987
119.
Zurück zum Zitat Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195 Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195
120.
Zurück zum Zitat Pineda JRET, Antoniou D, Schwartz SD (2010) Slow conformational motions that favor sub-picosecond motions important for catalysis. J Phys Chem B 114:15985–15990 Pineda JRET, Antoniou D, Schwartz SD (2010) Slow conformational motions that favor sub-picosecond motions important for catalysis. J Phys Chem B 114:15985–15990
121.
Zurück zum Zitat Pisliakov AV, Cao J, Kamerlin SCL, Warshel A (2009) Enzyme millisecond conformational dynamics do not catalyze the chemical step. Proc Natl Acad Sci USA 106:17359–17364 Pisliakov AV, Cao J, Kamerlin SCL, Warshel A (2009) Enzyme millisecond conformational dynamics do not catalyze the chemical step. Proc Natl Acad Sci USA 106:17359–17364
122.
Zurück zum Zitat Schramm VL (2011) Enzymatic transition states, transition-state analogs, dynamics, thermodynamics, and lifetimes. Annu Rev Biochem 80:703–732 Schramm VL (2011) Enzymatic transition states, transition-state analogs, dynamics, thermodynamics, and lifetimes. Annu Rev Biochem 80:703–732
123.
Zurück zum Zitat Rajagopalan PT, Benkovic SJ (2002) Preorganization and protein dynamics in enzyme catalysis. Chem Rec 2:24–36 Rajagopalan PT, Benkovic SJ (2002) Preorganization and protein dynamics in enzyme catalysis. Chem Rec 2:24–36
124.
Zurück zum Zitat Nagel ZD, Klinman JP (2006) Tunneling and dynamics in enzymatic hydride transfer. Chem Rev 106:3095–3118 Nagel ZD, Klinman JP (2006) Tunneling and dynamics in enzymatic hydride transfer. Chem Rev 106:3095–3118
125.
Zurück zum Zitat Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, Milo R (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:4402–4410 Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, Milo R (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:4402–4410
126.
Zurück zum Zitat Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34:938–945 Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34:938–945
127.
Zurück zum Zitat Vendruscolo M (2010) Enzymatic activity in disordered states of proteins. Curr Opin Chem Biol 14:671–675 Vendruscolo M (2010) Enzymatic activity in disordered states of proteins. Curr Opin Chem Biol 14:671–675
128.
Zurück zum Zitat Roca M, Messer B, Hilvert D, Warshel A (2008) On the relationship between folding and chemical landscapes in enzyme catalysis. Proc Natl Acad Sci USA 105:13877–13882 Roca M, Messer B, Hilvert D, Warshel A (2008) On the relationship between folding and chemical landscapes in enzyme catalysis. Proc Natl Acad Sci USA 105:13877–13882
129.
Zurück zum Zitat Silva RG, Murkin AS, Schramm VL (2011) Femtosecond dynamics coupled to chemical barrier crossing in a Born–Oppenheimer enzyme. Proc Natl Acad Sci USA 108:18661–18665 Silva RG, Murkin AS, Schramm VL (2011) Femtosecond dynamics coupled to chemical barrier crossing in a Born–Oppenheimer enzyme. Proc Natl Acad Sci USA 108:18661–18665
130.
Zurück zum Zitat Kipp DR, Silva RG, Schramm VL (2011) Mass-dependent bond vibrational dynamics influence catalysis by HIV-1 protease. J Am Chem Soc 133:19358–19361 Kipp DR, Silva RG, Schramm VL (2011) Mass-dependent bond vibrational dynamics influence catalysis by HIV-1 protease. J Am Chem Soc 133:19358–19361
131.
Zurück zum Zitat Loveridge EJ, Tey L-H, Behiry EM, Dawson WM, Evans RM, Whittaker SB-M, Günther UL, Williams C, Crump MP, Allemann RK (2011) The role of large-scale motions in catalysis by dihydrofolate reductase. J Am Chem Soc 133:20561–20570 Loveridge EJ, Tey L-H, Behiry EM, Dawson WM, Evans RM, Whittaker SB-M, Günther UL, Williams C, Crump MP, Allemann RK (2011) The role of large-scale motions in catalysis by dihydrofolate reductase. J Am Chem Soc 133:20561–20570
132.
Zurück zum Zitat Doshi U, McGowan LC, Ladani ST, Hamelberg D (2012) Resolving the complex role of enzyme conformational dynamics in catalytic function. Proc Natl Acad Sci USA 109(15): 5699–5704 Doshi U, McGowan LC, Ladani ST, Hamelberg D (2012) Resolving the complex role of enzyme conformational dynamics in catalytic function. Proc Natl Acad Sci USA 109(15): 5699–5704
133.
Zurück zum Zitat Tokuriki N, Tawfik DS (2009) Protein dynamism and evolvability. Science 324:203–207 Tokuriki N, Tawfik DS (2009) Protein dynamism and evolvability. Science 324:203–207
134.
Zurück zum Zitat James LC, Tawfik DS (2003) Conformational diversity and protein evolution – a 60-year-old hypothesis revisited. Trends Biochem Sci 28:361–368 James LC, Tawfik DS (2003) Conformational diversity and protein evolution – a 60-year-old hypothesis revisited. Trends Biochem Sci 28:361–368
135.
Zurück zum Zitat Zimmermann J, Oakman EL, Thorpe IF, Shi X, Abbyad P, Brooks CL 3rd, Boxer SG, Romesberg FE (2006) Antibody evolution constrains conformational heterogeneity by tailoring protein dynamics. Proc Natl Acad Sci USA 103:13722–13727 Zimmermann J, Oakman EL, Thorpe IF, Shi X, Abbyad P, Brooks CL 3rd, Boxer SG, Romesberg FE (2006) Antibody evolution constrains conformational heterogeneity by tailoring protein dynamics. Proc Natl Acad Sci USA 103:13722–13727
136.
Zurück zum Zitat Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505 Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505
137.
Zurück zum Zitat Hou L, Honaker MT, Shireman LM, Balogh LM, Roberts AG, Ng KC, Nath A, Atkins WM (2007) Functional promiscuity correlates with conformational heterogeneity in A-class glutathione S-transferases. J Biol Chem 282:23264–23274 Hou L, Honaker MT, Shireman LM, Balogh LM, Roberts AG, Ng KC, Nath A, Atkins WM (2007) Functional promiscuity correlates with conformational heterogeneity in A-class glutathione S-transferases. J Biol Chem 282:23264–23274
138.
Zurück zum Zitat O'Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 6:R91–R105 O'Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 6:R91–R105
139.
Zurück zum Zitat Jimenez R, Salazar G, Yin J, Joo T, Romesberg FE (2004) Protein dynamics and the immunological evolution of molecular recognition. Proc Natl Acad Sci USA 101:3803–3808 Jimenez R, Salazar G, Yin J, Joo T, Romesberg FE (2004) Protein dynamics and the immunological evolution of molecular recognition. Proc Natl Acad Sci USA 101:3803–3808
140.
Zurück zum Zitat James LC, Tawfik DS (2009) The specificity of cross-reactivity: promiscuous antibody binding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness. Protein Sci 12:2183–2193 James LC, Tawfik DS (2009) The specificity of cross-reactivity: promiscuous antibody binding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness. Protein Sci 12:2183–2193
141.
Zurück zum Zitat Lin Y-S, Hsu W-L, Hwang J-K, Li W-H (2007) Proportion of solvent-exposed amino acids in a protein and rate of protein evolution. Mol Biol Evol 24:1005–1011 Lin Y-S, Hsu W-L, Hwang J-K, Li W-H (2007) Proportion of solvent-exposed amino acids in a protein and rate of protein evolution. Mol Biol Evol 24:1005–1011
142.
Zurück zum Zitat Jernigan RL, Kloczkowski A (2007) Packing regularities in biological structures relate to their dynamics. Methods Mol Biol 350:251–276 Jernigan RL, Kloczkowski A (2007) Packing regularities in biological structures relate to their dynamics. Methods Mol Biol 350:251–276
143.
Zurück zum Zitat Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, Oldfield CJ, Williams CJ, Dunker AK (2002) Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol 55:104–110 Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, Oldfield CJ, Williams CJ, Dunker AK (2002) Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol 55:104–110
144.
Zurück zum Zitat Woycechowsky KJ, Choutko A, Vamvaca K, Hilvert D (2008) Relative tolerance of an enzymatic molten globule and its thermostable counterpart to point mutation. Biochemistry 47:13489–13496 Woycechowsky KJ, Choutko A, Vamvaca K, Hilvert D (2008) Relative tolerance of an enzymatic molten globule and its thermostable counterpart to point mutation. Biochemistry 47:13489–13496
145.
Zurück zum Zitat Gould SM, Tawfik DS (2005) Directed evolution of the promiscuous esterase activity of carbonic anhydrase II. Biochemistry 44:5444–5452 Gould SM, Tawfik DS (2005) Directed evolution of the promiscuous esterase activity of carbonic anhydrase II. Biochemistry 44:5444–5452
146.
Zurück zum Zitat Umeno D, Tobias AV, Arnold FH (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69:51–78 Umeno D, Tobias AV, Arnold FH (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69:51–78
147.
Zurück zum Zitat Brustad EM, Arnold FH (2011) Optimizing non-natural protein function with directed evolution. Curr Opin Chem Biol 15:201–210 Brustad EM, Arnold FH (2011) Optimizing non-natural protein function with directed evolution. Curr Opin Chem Biol 15:201–210
148.
Zurück zum Zitat Williams GJ, Zhang C, Thorson JS (2007) Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Nat Chem Biol 3:657–662 Williams GJ, Zhang C, Thorson JS (2007) Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Nat Chem Biol 3:657–662
149.
Zurück zum Zitat Jourden MJ, Clarke CN, Palmer AK, Barth EJ, Prada RC, Hale RN, Fraga D, Snider MJ, Edmiston PL (2007) Changing the substrate specificity of creatine kinase from creatine to glycocyamine: evidence for a highly evolved active site. Biochim Biophys Acta 1774: 1519–1527 Jourden MJ, Clarke CN, Palmer AK, Barth EJ, Prada RC, Hale RN, Fraga D, Snider MJ, Edmiston PL (2007) Changing the substrate specificity of creatine kinase from creatine to glycocyamine: evidence for a highly evolved active site. Biochim Biophys Acta 1774: 1519–1527
150.
Zurück zum Zitat Chen ZL, Katzenellenbogen BS, Katzenellenbogen JA, Zhao HM (2004) Directed evolution of human estrogen receptor variants with significantly enhanced androgen specificity and affinity. J Biol Chem 279:33855–33864 Chen ZL, Katzenellenbogen BS, Katzenellenbogen JA, Zhao HM (2004) Directed evolution of human estrogen receptor variants with significantly enhanced androgen specificity and affinity. J Biol Chem 279:33855–33864
151.
Zurück zum Zitat Joerger AC, Mayer S, Fersht AR (2003) Mimicking natural evolution in vitro: an N-acetylneuraminate lyase mutant with an increased dihydrodipicolinate synthase activity. Proc Natl Acad Sci USA 100:5694–5699 Joerger AC, Mayer S, Fersht AR (2003) Mimicking natural evolution in vitro: an N-acetylneuraminate lyase mutant with an increased dihydrodipicolinate synthase activity. Proc Natl Acad Sci USA 100:5694–5699
152.
Zurück zum Zitat Gaille C, Kast P, Haas D (2002) Salicylate biosynthesis in Pseudomonas aeruginosa. Purification and characterization of PchB, a novel bifunctional enzyme displaying isochorismate pyruvate-lyase and chorismate mutase activities. J Biol Chem 277:21768–21775 Gaille C, Kast P, Haas D (2002) Salicylate biosynthesis in Pseudomonas aeruginosa. Purification and characterization of PchB, a novel bifunctional enzyme displaying isochorismate pyruvate-lyase and chorismate mutase activities. J Biol Chem 277:21768–21775
153.
Zurück zum Zitat DeGrado WF (1993) Peptide engineering. Catalytic molten globules. Nature 365:488–489 DeGrado WF (1993) Peptide engineering. Catalytic molten globules. Nature 365:488–489
154.
Zurück zum Zitat Guarnera E, Pellarin R, Caflisch A (2009) How does a simplified-sequence protein fold? Biophys J 97:1737–1746 Guarnera E, Pellarin R, Caflisch A (2009) How does a simplified-sequence protein fold? Biophys J 97:1737–1746
155.
Zurück zum Zitat Suskiewicz MJ, Sussman JL, Silman I, Shaul Y (2011) Context-dependent resistance to proteolysis of intrinsically disordered proteins. Protein Sci 20:1285–1297 Suskiewicz MJ, Sussman JL, Silman I, Shaul Y (2011) Context-dependent resistance to proteolysis of intrinsically disordered proteins. Protein Sci 20:1285–1297
Metadaten
Titel
Protein Conformational Disorder and Enzyme Catalysis
verfasst von
Cindy Schulenburg
Donald Hilvert
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/128_2012_411

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.