Skip to main content

2015 | OriginalPaper | Buchkapitel

Protein Tectons in Synthetic Biology

The Expansion of Cellular Functionality Combining Chemical Biology of Small Organic Molecules with Protein Tectons—Unnatural Amino Acids, Protein Based Biohybrid Materials and De Novo Organelles

verfasst von : Stefan M. Schiller

Erschienen in: Synthetic Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The expansion of cellular functions via novel modular building blocks, namely unnatural amino acids, their site-selective genetically encoded cotranslational incorporation into proteins, requires the redesign and expansion of the translational network with additional components, the orthogonal tRNA and tRNA synthetase. At the next level protein tectons (tecton = architectural building block) constitute complex genetically encoded “material libraries” inside the cell. These protein tectons are architectural building blocks allowing for complex supramolecular self-assembly inside the cell, forming cellular compartments or constituting 3D matrix mimicry of the extracellular matrix outside the cell. In addition they form the basis for biohybrid materials in protein/enzyme engineering, nanotechnology and regenerative medicine. The defined modification of protein tectons utilizing chemical biology allows for the selective bioconjugation e.g. of unnatural amino acids, via bioorthogonal chemical reactions introducing novel chemical entities expanding the repertoire of “posttranslational” protein modifications in vitro and in vivo for various applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Albayrak, C., & Swartz, J. R. (2013). Cell-free co-production of an orthogonal transfer RNA activates efficient site-specific non-natural amino acid incorporation. Nucleic Acids Research, 41(11), 5949–5963. doi:10.1093/nar/gkt226.CrossRef Albayrak, C., & Swartz, J. R. (2013). Cell-free co-production of an orthogonal transfer RNA activates efficient site-specific non-natural amino acid incorporation. Nucleic Acids Research, 41(11), 5949–5963. doi:10.​1093/​nar/​gkt226.CrossRef
Zurück zum Zitat Amiram, M., Quiroz, F. G., Callahan, D. J., & Chilkoti, A. (2011). A highly parallel method for synthesizing DNA repeats enables the discovery of ‘smart’ protein polymers. Nature Materials, 10(2), 141–148. doi:10.1038/nmat2942. Amiram, M., Quiroz, F. G., Callahan, D. J., & Chilkoti, A. (2011). A highly parallel method for synthesizing DNA repeats enables the discovery of ‘smart’ protein polymers. Nature Materials, 10(2), 141–148. doi:10.​1038/​nmat2942.
Zurück zum Zitat Berry, M. J., Banu, L., Chen, Y. Y., Mandel, S. J., Kieffer, J. D., Harney, J. W., et al. (1991). Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3’ untranslated region. Nature, 353(6341), 273–276. doi:10.1038/353273a0.CrossRef Berry, M. J., Banu, L., Chen, Y. Y., Mandel, S. J., Kieffer, J. D., Harney, J. W., et al. (1991). Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3’ untranslated region. Nature, 353(6341), 273–276. doi:10.​1038/​353273a0.CrossRef
Zurück zum Zitat Budisa, N. (2005). Engineering the genetic code: Expanding the amino acid repertoire for the design of novel proteins. Weinheim: Wiley-VCH.CrossRef Budisa, N. (2005). Engineering the genetic code: Expanding the amino acid repertoire for the design of novel proteins. Weinheim: Wiley-VCH.CrossRef
Zurück zum Zitat Budisa, N., Karnbrock, W., Steinbacher, S., Humm, A., Prade, L., Neuefeind, T., et al. (1997). Bioincorporation of telluromethionine into proteins: A promising new approach for X-ray structure analysis of proteins. Journal of Molecular Biology, 270(4), 616–623. doi:10.1006/jmbi.1997.1132.CrossRef Budisa, N., Karnbrock, W., Steinbacher, S., Humm, A., Prade, L., Neuefeind, T., et al. (1997). Bioincorporation of telluromethionine into proteins: A promising new approach for X-ray structure analysis of proteins. Journal of Molecular Biology, 270(4), 616–623. doi:10.​1006/​jmbi.​1997.​1132.CrossRef
Zurück zum Zitat Budisa, N., Wenger, W., & Wiltschi, B. (2010). Residue-specific global fluorination of Candida Antarctica lipase B in Pichia pastoris. Molecular BioSystems, 6(9), 1630–1639. doi:10.1039/c002256j.CrossRef Budisa, N., Wenger, W., & Wiltschi, B. (2010). Residue-specific global fluorination of Candida Antarctica lipase B in Pichia pastoris. Molecular BioSystems, 6(9), 1630–1639. doi:10.​1039/​c002256j.CrossRef
Zurück zum Zitat Chin, J. W., Cropp, T. A., Anderson, J. C., Mukherji, M., Zhang, Z. W., & Schultz, P. G. (2003). An expanded eukaryotic genetic code. Science, 301(5635), 964–967.CrossRef Chin, J. W., Cropp, T. A., Anderson, J. C., Mukherji, M., Zhang, Z. W., & Schultz, P. G. (2003). An expanded eukaryotic genetic code. Science, 301(5635), 964–967.CrossRef
Zurück zum Zitat Chin, J. W., Martin, A. B., King, D. S., Wang, L., & Schultz, P. G. (2002a). Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11020–11024.CrossRef Chin, J. W., Martin, A. B., King, D. S., Wang, L., & Schultz, P. G. (2002a). Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11020–11024.CrossRef
Zurück zum Zitat Chin, J. W., Santoro, S. W., Martin, A. B., King, D. S., Wang, L., & Schultz, P. G. (2002b). Addition of p-Azido-L-phenylalanine to the genetic code of Escherichia Coli. Journal of the American Chemical Society, 124(31), 9026–9027. doi:10.1021/ja027007w.CrossRef Chin, J. W., Santoro, S. W., Martin, A. B., King, D. S., Wang, L., & Schultz, P. G. (2002b). Addition of p-Azido-L-phenylalanine to the genetic code of Escherichia Coli. Journal of the American Chemical Society, 124(31), 9026–9027. doi:10.​1021/​ja027007w.CrossRef
Zurück zum Zitat Deiters, A., Groff, D., Ryu, Y. H., Xie, J. M., & Schultz, P. G. (2006). A genetically encoded photocaged tyrosine. Angewandte Chemie-International Edition, 45(17), 2728–2731. doi:10.1002/anie.200600264.CrossRef Deiters, A., Groff, D., Ryu, Y. H., Xie, J. M., & Schultz, P. G. (2006). A genetically encoded photocaged tyrosine. Angewandte Chemie-International Edition, 45(17), 2728–2731. doi:10.​1002/​anie.​200600264.CrossRef
Zurück zum Zitat Edwardraja, S., Sriram, S., Govindan, R., Budisa, N., & Lee, S. G. (2011). Enhancing the thermal stability of a single-chain Fv fragment by in vivo global fluorination of the proline residues. Molecular BioSystems, 7(1), 258–265. doi:10.1039/c0mb00154f.CrossRef Edwardraja, S., Sriram, S., Govindan, R., Budisa, N., & Lee, S. G. (2011). Enhancing the thermal stability of a single-chain Fv fragment by in vivo global fluorination of the proline residues. Molecular BioSystems, 7(1), 258–265. doi:10.​1039/​c0mb00154f.CrossRef
Zurück zum Zitat Elvin, C. M., Carr, A. G., Huson, M. G., Maxwell, J. M., Pearson, R. D., Vuocolo, T., et al. (2005). Synthesis and properties of crosslinked recombinant pro-resilin. Nature, 437(7061), 999–1002. doi:10.1038/nature04085.CrossRef Elvin, C. M., Carr, A. G., Huson, M. G., Maxwell, J. M., Pearson, R. D., Vuocolo, T., et al. (2005). Synthesis and properties of crosslinked recombinant pro-resilin. Nature, 437(7061), 999–1002. doi:10.​1038/​nature04085.CrossRef
Zurück zum Zitat Forne, I., Ludwigsen, J., Imhof, A., Becker, P. B., & Mueller-Planitz, F. (2012). Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry. Molecular & Cellular Proteomics, 11(4), M111–012088. doi: 10.1074/mcp.M111.012088. Forne, I., Ludwigsen, J., Imhof, A., Becker, P. B., & Mueller-Planitz, F. (2012). Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry. Molecular & Cellular Proteomics, 11(4), M111–012088. doi: 10.​1074/​mcp.​M111.​012088.
Zurück zum Zitat Goeden-Wood, N. L., Conticello, V. P., Muller, S. J., & Keasling, J. D. (2002). Improved assembly of multimeric genes for the biosynthetic production of protein polymers. Biomacromolecules, 3(4), 874–879. doi:10.1021/bm0255342.CrossRef Goeden-Wood, N. L., Conticello, V. P., Muller, S. J., & Keasling, J. D. (2002). Improved assembly of multimeric genes for the biosynthetic production of protein polymers. Biomacromolecules, 3(4), 874–879. doi:10.​1021/​bm0255342.CrossRef
Zurück zum Zitat Grunbeck, A., Huber, T., Abrol, R., Trzaskowski, B., Goddard, W. A, 3rd, & Sakmar, T. P. (2012). Genetically encoded photo-cross-linkers map the binding site of an allosteric drug on a G protein-coupled receptor. ACS Chemical Biology, 7(6), 967–972. doi:10.1021/cb300059z.CrossRef Grunbeck, A., Huber, T., Abrol, R., Trzaskowski, B., Goddard, W. A, 3rd, & Sakmar, T. P. (2012). Genetically encoded photo-cross-linkers map the binding site of an allosteric drug on a G protein-coupled receptor. ACS Chemical Biology, 7(6), 967–972. doi:10.​1021/​cb300059z.CrossRef
Zurück zum Zitat Grunbeck, A., Huber, T., Sachdev, P., & Sakmar, T. P. (2011). Mapping the ligand-binding site on a G protein-coupled receptor (GPCR) using genetically encoded photocrosslinkers. Biochemistry, 50(17), 3411–3413. doi:10.1021/bi200214r.CrossRef Grunbeck, A., Huber, T., Sachdev, P., & Sakmar, T. P. (2011). Mapping the ligand-binding site on a G protein-coupled receptor (GPCR) using genetically encoded photocrosslinkers. Biochemistry, 50(17), 3411–3413. doi:10.​1021/​bi200214r.CrossRef
Zurück zum Zitat Hartman, M. C., Josephson, K., & Szostak, J. W. (2006). Enzymatic aminoacylation of tRNA with unnatural amino acids. Proceedings of the National Academy of Sciences of the United States of America, 103(12), 4356–4361. doi:10.1073/pnas.0509219103.CrossRef Hartman, M. C., Josephson, K., & Szostak, J. W. (2006). Enzymatic aminoacylation of tRNA with unnatural amino acids. Proceedings of the National Academy of Sciences of the United States of America, 103(12), 4356–4361. doi:10.​1073/​pnas.​0509219103.CrossRef
Zurück zum Zitat Holland, C., Vollrath, F., Ryan, A. J., & Mykhaylyk, O. O. (2012). Silk and synthetic polymers: Reconciling 100 degrees of separation. Advanced Materials, 24(1), 105–109, 104. doi: 10.1002/adma.201103664. Holland, C., Vollrath, F., Ryan, A. J., & Mykhaylyk, O. O. (2012). Silk and synthetic polymers: Reconciling 100 degrees of separation. Advanced Materials, 24(1), 105–109, 104. doi: 10.1002/adma.201103664.
Zurück zum Zitat Huber, M., Schreiber, A., Benz, K., & Schiller, S. M. (accepted). Biomaterials. Huber, M., Schreiber, A., Benz, K., & Schiller, S. M. (accepted). Biomaterials.
Zurück zum Zitat Huber, M. C., Schreiber, A., von Olshausen, P., Varga, B. R., Kretz, O., Joch, B., Barnert, S., Schubert, R., Eimer, S., Kele, P., Schiller, S. M. (in revision). Introducing a combinatorial DNA-toolbox platform constituting defined protein-based biohybrid materials. Programmed nano-engineering of genetically encoded protein tectons forming organelle-like compartments inside the cell. Huber, M. C., Schreiber, A., von Olshausen, P., Varga, B. R., Kretz, O., Joch, B., Barnert, S., Schubert, R., Eimer, S., Kele, P., Schiller, S. M. (in revision). Introducing a combinatorial DNA-toolbox platform constituting defined protein-based biohybrid materials. Programmed nano-engineering of genetically encoded protein tectons forming organelle-like compartments inside the cell.
Zurück zum Zitat Ieva, R., Tian, P., Peterson, J. H., & Bernstein, H. D. (2011). Sequential and spatially restricted interactions of assembly factors with an autotransporter beta domain. Proceedings of the National Academy of Sciences of the United States of America, 108(31), E383–E391. doi:10.1073/pnas.1103827108.CrossRef Ieva, R., Tian, P., Peterson, J. H., & Bernstein, H. D. (2011). Sequential and spatially restricted interactions of assembly factors with an autotransporter beta domain. Proceedings of the National Academy of Sciences of the United States of America, 108(31), E383–E391. doi:10.​1073/​pnas.​1103827108.CrossRef
Zurück zum Zitat Johnson, J. A., Lu, Y. Y., Van Deventer, J. A., & Tirrell, D. A. (2010). Residue-specific incorporation of non-canonical amino acids into proteins: Recent developments and applications. Current Opinion in Chemical Biology, 14(6), 774–780. doi:10.1016/j.cbpa.2010.09.013.CrossRef Johnson, J. A., Lu, Y. Y., Van Deventer, J. A., & Tirrell, D. A. (2010). Residue-specific incorporation of non-canonical amino acids into proteins: Recent developments and applications. Current Opinion in Chemical Biology, 14(6), 774–780. doi:10.​1016/​j.​cbpa.​2010.​09.​013.CrossRef
Zurück zum Zitat Liu, C. C., & Schultz, P. G. (2006). Recombinant expression of selectively sulfated proteins in Escherichia coli. Nature Biotechnology, 24(11), 1436–1440. doi:10.1038/nbt1254.CrossRef Liu, C. C., & Schultz, P. G. (2006). Recombinant expression of selectively sulfated proteins in Escherichia coli. Nature Biotechnology, 24(11), 1436–1440. doi:10.​1038/​nbt1254.CrossRef
Zurück zum Zitat Liu, W. S., Alfonta, L., Mack, A. V., & Schultz, P. G. (2007a). Structural basis for the recognition of para-benzoyl-L-phenylalanine by evolved aminoacyl-tRNA synthetases. Angewandte Chemie-International Edition, 46(32), 6073–6075. doi:10.1002/anie.200701990.CrossRef Liu, W. S., Alfonta, L., Mack, A. V., & Schultz, P. G. (2007a). Structural basis for the recognition of para-benzoyl-L-phenylalanine by evolved aminoacyl-tRNA synthetases. Angewandte Chemie-International Edition, 46(32), 6073–6075. doi:10.​1002/​anie.​200701990.CrossRef
Zurück zum Zitat Liu, W. S., Brock, A., Chen, S., Chen, S. B., & Schultz, P. G. (2007b). Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nature Methods, 4(3), 239–244. doi:10.1038/nmeth1016.CrossRefMATH Liu, W. S., Brock, A., Chen, S., Chen, S. B., & Schultz, P. G. (2007b). Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nature Methods, 4(3), 239–244. doi:10.​1038/​nmeth1016.CrossRefMATH
Zurück zum Zitat Ma, Y., Biava, H., Contestabile, R., Budisa, N., & di Salvo, M. L. (2014). Coupling bioorthogonal chemistries with artificial metabolism: intracellular biosynthesis of azidohomoalanine and its incorporation into recombinant proteins. Molecules, 19(1), 1004–1022. doi:10.3390/molecules19011004.CrossRef Ma, Y., Biava, H., Contestabile, R., Budisa, N., & di Salvo, M. L. (2014). Coupling bioorthogonal chemistries with artificial metabolism: intracellular biosynthesis of azidohomoalanine and its incorporation into recombinant proteins. Molecules, 19(1), 1004–1022. doi:10.​3390/​molecules1901100​4.CrossRef
Zurück zum Zitat Magliery, T. J., Anderson, J. C., & Schultz, P. G. (2001). Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of “shifty” four-base codons with a library approach in Escherichia coli. Journal of Molecular Biology, 307(3), 755–769. doi:10.1006/jmbi.2001.4518.CrossRef Magliery, T. J., Anderson, J. C., & Schultz, P. G. (2001). Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of “shifty” four-base codons with a library approach in Escherichia coli. Journal of Molecular Biology, 307(3), 755–769. doi:10.​1006/​jmbi.​2001.​4518.CrossRef
Zurück zum Zitat McDaniel, J. R., Mackay, J. A., Quiroz, F. G., & Chilkoti, A. (2010). Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes. Biomacromolecules, 11(4), 944–952. doi:10.1021/bm901387t.CrossRef McDaniel, J. R., Mackay, J. A., Quiroz, F. G., & Chilkoti, A. (2010). Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes. Biomacromolecules, 11(4), 944–952. doi:10.​1021/​bm901387t.CrossRef
Zurück zum Zitat McPherson, D. T., Xu, J., & Urry, D. W. (1996). Product purification by reversible phase transition following Escherichia coli expression of genes encoding up to 251 repeats of the elastomeric pentapeptide GVGVP. Protein Expression and Purification, 7(1), 51–57. doi:10.1006/prep.1996.0008.CrossRef McPherson, D. T., Xu, J., & Urry, D. W. (1996). Product purification by reversible phase transition following Escherichia coli expression of genes encoding up to 251 repeats of the elastomeric pentapeptide GVGVP. Protein Expression and Purification, 7(1), 51–57. doi:10.​1006/​prep.​1996.​0008.CrossRef
Zurück zum Zitat Mehl, R. A., Anderson, J. C., Santoro, S. W., Wang, L., Martin, A. B., King, D. S., et al. (2003). Generation of a bacterium with a 21 amino acid genetic code. Journal of the American Chemical Society, 125(4), 935–939. doi:10.1021/ja0284153.CrossRef Mehl, R. A., Anderson, J. C., Santoro, S. W., Wang, L., Martin, A. B., King, D. S., et al. (2003). Generation of a bacterium with a 21 amino acid genetic code. Journal of the American Chemical Society, 125(4), 935–939. doi:10.​1021/​ja0284153.CrossRef
Zurück zum Zitat Merkel, L., & Budisa, N. (2012). Organic fluorine as a polypeptide building element: In vivo expression of fluorinated peptides, proteins and proteomes. Organic and Biomolecular Chemistry, 10(36), 7241–7261. doi:10.1039/c2ob06922a.CrossRef Merkel, L., & Budisa, N. (2012). Organic fluorine as a polypeptide building element: In vivo expression of fluorinated peptides, proteins and proteomes. Organic and Biomolecular Chemistry, 10(36), 7241–7261. doi:10.​1039/​c2ob06922a.CrossRef
Zurück zum Zitat Merkel, L., Schauer, M., Antranikian, G., & Budisa, N. (2010). Parallel incorporation of different fluorinated amino acids: on the way to “teflon” proteins. ChemBioChem, 11(11), 1505–1507. doi:10.1002/cbic.201000295.CrossRef Merkel, L., Schauer, M., Antranikian, G., & Budisa, N. (2010). Parallel incorporation of different fluorinated amino acids: on the way to “teflon” proteins. ChemBioChem, 11(11), 1505–1507. doi:10.​1002/​cbic.​201000295.CrossRef
Zurück zum Zitat Meyer, D. E., & Chilkoti, A. (2002). Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules, 3(2), 357–367. doi:10.1021/bm015630n.CrossRef Meyer, D. E., & Chilkoti, A. (2002). Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules, 3(2), 357–367. doi:10.​1021/​bm015630n.CrossRef
Zurück zum Zitat Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C., & Schultz, P. G. (1989). A general method for site-specific incorporation of unnatural amino acids into proteins. Science, 244(4901), 182–188. doi:10.1126/science.2649980.CrossRef Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C., & Schultz, P. G. (1989). A general method for site-specific incorporation of unnatural amino acids into proteins. Science, 244(4901), 182–188. doi:10.​1126/​science.​2649980.CrossRef
Zurück zum Zitat Palzer, S., Bantel, Y., Kazenwadel, F., Berg, M., Rupp, S., & Sohn, K. (2013). An expanded genetic code in Candida albicans to study protein-protein interactions in vivo. Eukaryotic Cell, 12(6), 816–827. doi:10.1128/EC.00075-13.CrossRef Palzer, S., Bantel, Y., Kazenwadel, F., Berg, M., Rupp, S., & Sohn, K. (2013). An expanded genetic code in Candida albicans to study protein-protein interactions in vivo. Eukaryotic Cell, 12(6), 816–827. doi:10.​1128/​EC.​00075-13.CrossRef
Zurück zum Zitat Pikkarainen, J., & Kulonen, E. (1972). Relations of various collagens, elastin, resilin and fibroin. Comparative Biochemistry and Physiology, 41(4B), 705–712. doi:10.1016/0305-0491(72)90083-1. Pikkarainen, J., & Kulonen, E. (1972). Relations of various collagens, elastin, resilin and fibroin. Comparative Biochemistry and Physiology, 41(4B), 705–712. doi:10.​1016/​0305-0491(72)90083-1.
Zurück zum Zitat Rodriguez-Cabello, J. C., Pierna, M., Fernandez-Colino, A., Garcia-Arevalo, C., & Arias, F. J. (2011). Recombinamers: Combining molecular complexity with diverse bioactivities for advanced biomedical and biotechnological applications. Advances in Biochemical Engineering/Biotechnology , 145–179, doi: 10.1007/10_2010_94. Rodriguez-Cabello, J. C., Pierna, M., Fernandez-Colino, A., Garcia-Arevalo, C., & Arias, F. J. (2011). Recombinamers: Combining molecular complexity with diverse bioactivities for advanced biomedical and biotechnological applications. Advances in Biochemical Engineering/Biotechnology , 145–179, doi: 10.​1007/​10_​2010_​94.
Zurück zum Zitat Schiller, S., & Huber, M. C. (2013). Protein assembler. (Vol. PCT/EP2013/060957, WO 2013/178627). Schiller, S., & Huber, M. C. (2013). Protein assembler. (Vol. PCT/EP2013/060957, WO 2013/178627).
Zurück zum Zitat Schreiber, A., & Schiller, S. M. (2013). Nanobiotechnology of protein compartments: Steps towards nanofactories. Bioinspired, Biomimetic and Nanobiomaterials, 4(2), 157–164. doi:10.1680/bbn.13.00008. Schreiber, A., & Schiller, S. M. (2013). Nanobiotechnology of protein compartments: Steps towards nanofactories. Bioinspired, Biomimetic and Nanobiomaterials, 4(2), 157–164. doi:10.​1680/​bbn.​13.​00008.
Zurück zum Zitat Sletten, E. M., & Bertozzi, C. R. (2009). Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angewandte Chemie- International Edition, 48(38), 6974–6998. doi:10.1002/anie.200900942.CrossRef Sletten, E. M., & Bertozzi, C. R. (2009). Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angewandte Chemie- International Edition, 48(38), 6974–6998. doi:10.​1002/​anie.​200900942.CrossRef
Zurück zum Zitat Summerer, D., Chen, S., Wu, N., Deiters, A., Chin, J. W., & Schultz, P. G. (2006). A genetically encoded fluorescent amino acid. Proceedings of the National Academy of Sciences of the United States of America, 103(26), 9785–9789. doi:10.1073/pnas.0603965103.CrossRef Summerer, D., Chen, S., Wu, N., Deiters, A., Chin, J. W., & Schultz, P. G. (2006). A genetically encoded fluorescent amino acid. Proceedings of the National Academy of Sciences of the United States of America, 103(26), 9785–9789. doi:10.​1073/​pnas.​0603965103.CrossRef
Zurück zum Zitat Taki, M., Hohsaka, T., Murakami, H., Taira, K., & Sisido, M. (2001). A non-natural amino acid for efficient incorporation into proteins as a sensitive fluorescent probe. FEBS Letters, 507(1), 35–38. doi:10.1016/S0014-5793(01)02935-0.CrossRef Taki, M., Hohsaka, T., Murakami, H., Taira, K., & Sisido, M. (2001). A non-natural amino acid for efficient incorporation into proteins as a sensitive fluorescent probe. FEBS Letters, 507(1), 35–38. doi:10.​1016/​S0014-5793(01)02935-0.CrossRef
Zurück zum Zitat Umanah, G., Huang, L. Y., Schultz, P. G., Naider, F., & Becker, J. M. (2007). Incorporation of the unnatural amino acid p-benzoyl-L-phenylalanine (Bpa) into a G protein-coupled receptor in its native context. Biopolymers, 88(4), 522. Umanah, G., Huang, L. Y., Schultz, P. G., Naider, F., & Becker, J. M. (2007). Incorporation of the unnatural amino acid p-benzoyl-L-phenylalanine (Bpa) into a G protein-coupled receptor in its native context. Biopolymers, 88(4), 522.
Zurück zum Zitat van Hest, J. C. M., & Tirrell, D. A. (2001). Protein-based materials, toward a new level of structural control. Chemical Communications (19), 1897–1904. doi: 10.1039/b105185g. van Hest, J. C. M., & Tirrell, D. A. (2001). Protein-based materials, toward a new level of structural control. Chemical Communications (19), 1897–1904. doi: 10.​1039/​b105185g.
Zurück zum Zitat Wang, J., Schiller, S. M., & Schultz, P. G. (2007). A Biosynthetic route to dehydroalanine-containing proteins. Angewandte Chemie-International Edition, 46(36), 6849–6851. doi:10.1002/anie.200702305.CrossRef Wang, J., Schiller, S. M., & Schultz, P. G. (2007). A Biosynthetic route to dehydroalanine-containing proteins. Angewandte Chemie-International Edition, 46(36), 6849–6851. doi:10.​1002/​anie.​200702305.CrossRef
Zurück zum Zitat Wang, J. Y., Xie, J. M., & Schultz, P. G. (2006). A genetically encoded fluorescent amino acid. Journal of the American Chemical Society, 128(27), 8738–8739. doi:10.1021/ja062666k.CrossRef Wang, J. Y., Xie, J. M., & Schultz, P. G. (2006). A genetically encoded fluorescent amino acid. Journal of the American Chemical Society, 128(27), 8738–8739. doi:10.​1021/​ja062666k.CrossRef
Zurück zum Zitat Wang, L., Zhang, Z. W., Brock, A., & Schultz, P. G. (2003). Addition of the keto functional group to the genetic code of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 56–61. doi:10.1073/pnas.0234824100.CrossRef Wang, L., Zhang, Z. W., Brock, A., & Schultz, P. G. (2003). Addition of the keto functional group to the genetic code of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 56–61. doi:10.​1073/​pnas.​0234824100.CrossRef
Zurück zum Zitat Wu, N., Deiters, A., Cropp, T. A., King, D., & Schultz, P. G. (2004). A genetically encoded photocaged amino acid. Journal of the American Chemical Society, 126(44), 14306–14307. doi:10.1021/ja040175z.CrossRef Wu, N., Deiters, A., Cropp, T. A., King, D., & Schultz, P. G. (2004). A genetically encoded photocaged amino acid. Journal of the American Chemical Society, 126(44), 14306–14307. doi:10.​1021/​ja040175z.CrossRef
Zurück zum Zitat Xia, X. X., Qian, Z. G., Ki, C. S., Park, Y. H., Kaplan, D. L., & Lee, S. Y. (2010). Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14059–14063. doi:10.1073/pnas.1003366107.CrossRef Xia, X. X., Qian, Z. G., Ki, C. S., Park, Y. H., Kaplan, D. L., & Lee, S. Y. (2010). Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14059–14063. doi:10.​1073/​pnas.​1003366107.CrossRef
Zurück zum Zitat Xie, J. M., & Schultz, P. G. (2006). Innovation: A chemical toolkit for proteins—an expanded genetic code. Nature Reviews Molecular Cell Biology, 7(10), 775–782. doi:10.1038/nrm2005.CrossRef Xie, J. M., & Schultz, P. G. (2006). Innovation: A chemical toolkit for proteins—an expanded genetic code. Nature Reviews Molecular Cell Biology, 7(10), 775–782. doi:10.​1038/​nrm2005.CrossRef
Zurück zum Zitat Xie, J. M., Wang, L., Wu, N., Brock, A., Spraggon, G., & Schultz, P. G. (2004). The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination. Nature Biotechnology, 22(10), 1297–1301. doi:10.1038/nbt1013.CrossRef Xie, J. M., Wang, L., Wu, N., Brock, A., Spraggon, G., & Schultz, P. G. (2004). The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination. Nature Biotechnology, 22(10), 1297–1301. doi:10.​1038/​nbt1013.CrossRef
Zurück zum Zitat Ye, S., Kohrer, C., Huber, T., Kazmi, M., Sachdev, P., Yan, E. C., et al. (2008). Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis. The Journal of biological chemistry, 283(3), 1525–1533. doi:10.1074/jbc.M707355200.CrossRef Ye, S., Kohrer, C., Huber, T., Kazmi, M., Sachdev, P., Yan, E. C., et al. (2008). Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis. The Journal of biological chemistry, 283(3), 1525–1533. doi:10.​1074/​jbc.​M707355200.CrossRef
Zurück zum Zitat Ye, S., Zaitseva, E., Caltabiano, G., Schertler, G. F., Sakmar, T. P., Deupi, X., et al. (2010). Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature, 464(7293), 1386–1389. doi:10.1038/nature08948. U1314.CrossRef Ye, S., Zaitseva, E., Caltabiano, G., Schertler, G. F., Sakmar, T. P., Deupi, X., et al. (2010). Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature, 464(7293), 1386–1389. doi:10.​1038/​nature08948. U1314.CrossRef
Zurück zum Zitat Zheng, L., Baumann, U., & Reymond, J. L. (2004). An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Research, 32(14), e115. doi:10.1093/nar/gnh110.CrossRef Zheng, L., Baumann, U., & Reymond, J. L. (2004). An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Research, 32(14), e115. doi:10.​1093/​nar/​gnh110.CrossRef
Metadaten
Titel
Protein Tectons in Synthetic Biology
verfasst von
Stefan M. Schiller
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-02783-8_7

Neuer Inhalt