Skip to main content

Use of Kaede and Kikume Green–Red Fusions for Live Cell Imaging of G Protein-Coupled Receptors

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

The fusion of fluorescent proteins to G protein-coupled receptors (GPCRs) is an important tool to study, e.g., trafficking and protein interactions of these important drug targets. In the past, the green fluorescent protein and its derivatives have been widely used as fluorescent tags. More recently, it was reported that photoconvertible fluorescent proteins (PCFPs) such as Kaede or Kikume green–red protein could also be used as fluorescent tags for GPCRs. These proteins have the obvious advantage that their fluorescence can be switched once the GPCR of interest has reached a specific subcellular compartment. Here, we summarize the recent progress for live cell imaging of GPCRs using these PCFPs for trafficking, biosynthesis, and protein/protein interaction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prasher D, Eckenrode V, Ward W et al (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  PubMed  Google Scholar 

  2. Ando R (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A 99:12651–12656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rizo MA, Davidson MW, Piston WW (2010) Fluorescent protein tracking and detection: fluorescent protein structure and color variants. In: Goldmann RD, Swedlow JR, Spector DL (eds) Live cell imaging: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, USA, pp 3–34

    Google Scholar 

  4. Hayashi I, Mizuno H, Tong KI et al (2007) Crystallographic evidence for water-assisted photo-induced peptide cleavage in the stony coral fluorescent protein Kaede. J Mol Biol 372:918–926

    Article  CAS  PubMed  Google Scholar 

  5. Tsutsui H, Shimizu H, Mizuno H et al (2009) The E1 mechanism in photo-induced beta-elimination reactions for green-to-red conversion of fluorescent proteins. Chem Biol 16: 1140–1147

    Article  CAS  PubMed  Google Scholar 

  6. Habuchi S, Tsutsui H, Kochaniak AB et al (2008) mKikGR, a monomeric photoswitchable fluorescent protein. PLoS One 3:e3944

    Article  PubMed Central  PubMed  Google Scholar 

  7. Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  CAS  PubMed  Google Scholar 

  8. Ma P, Zemmel R (2002) Value of novelty? Nat Rev Drug Discov 1:571–572

    Article  CAS  PubMed  Google Scholar 

  9. Salon JA, Lodowski DT, Palczewski K (2011) The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 63:901–937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Magalhaes AC, Dunn H, Ferguson SS (2012) Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol 165:1717–1736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nejsum LN, Christensen TM, Robben JH et al (2011) Novel mutation in the AVPR2 gene in a Danish male with nephrogenic diabetes insipidus caused by ER retention and subsequent lysosomal degradation of the mutant receptor. NDT Plus 4:158–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Schwieger I, Lautz K, Krause E et al (2008) Derlin-1 and p97/valosin-containing protein mediate the endoplasmic reticulum-associated degradation of human V2 vasopressin receptors. Mol Pharmacol 73:697–708

    Article  CAS  PubMed  Google Scholar 

  13. Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Vassart G, Costagliola S (2011) G protein-coupled receptors: mutations and endocrine diseases. Nat Rev Endocrinol 7:362–372

    Article  CAS  PubMed  Google Scholar 

  15. Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24

    CAS  PubMed  Google Scholar 

  16. Luttrell LM (2008) Reviews in molecular biology and biotechnology: transmembrane signalling by G protein-coupled receptors. Mol Biotechnol 39:239–264

    Article  CAS  PubMed  Google Scholar 

  17. Kreuchwig A, Kleinau G, Kreuchwig F et al (2011) Research resource: update and extension of a glycoprotein hormone receptors web application. Mol Endocrinol 25:707–712

    Article  CAS  PubMed  Google Scholar 

  18. Kleinau G, Brehm M, Wiedemann U et al (2007) Implications for molecular mechanisms of glycoprotein hormone receptors using a new sequence-structure-function analysis resource. Mol Endocrinol 21:574–580

    Article  CAS  PubMed  Google Scholar 

  19. Khelashvili G, Dorff K, Shan J et al (2010) GPCR-OKB: the G protein coupled receptor oligomer knowledge base. Bioinformatics 26: 1804–1805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Skrabanek L, Murcia M, Bouvier M et al (2007) Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC Bioinformatics 8:177

    Article  PubMed Central  PubMed  Google Scholar 

  21. Albizu L, Cottet M, Kralikova M et al (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6:587–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Urizar E, Montanelli L, Loy T et al (2005) Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J 24:1954–1964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. El-Asmar L, Springael JY, Ballet S et al (2005) Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers. Mol Pharmacol 67:460–469

    Article  CAS  PubMed  Google Scholar 

  24. Mesnier D, Banères JL (2004) Cooperative conformational changes in a G-protein-coupled receptor dimer, the leukotriene B(4) receptor BLT1. J Biol Chem 279:49664–49670

    Article  CAS  PubMed  Google Scholar 

  25. George SR, Fan T, Xie Z et al (2000) Oligomerization of μ- and δ-opioid receptors: generation of novel functional properties. J Biol Chem 275:26128–26135

    Article  CAS  PubMed  Google Scholar 

  26. Charles AC, Mostovskay N, Asas K et al (2003) Coexpression of δ-opioid receptors with μ receptors in GH3 cells changes the functional response to μ agonists from inhibitory to excitatory. Mol Pharmacol 63:89–95

    Article  CAS  PubMed  Google Scholar 

  27. Mellado M, Rodríguez-Frade JM, Vila-Coro AJ et al (2001) Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J 20:2497–2507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Allen MD, Neumann S, Gershengorn MC (2011) Occupancy of both sites on the thyrotropin (TSH) receptor dimer is necessary for phosphoinositide signaling. FASEB J 25:3687–3694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Pin JP, Comps-Agrar L, Maurel D et al (2009) G-protein-coupled receptor oligomers: two or more for what? Lessons from mGlu and GABAB receptors. J Physiol 587:5337–5344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Terrillon S, Barberis C, Bouvier M (2004) Heterodimerisation of V1a and V2 vasopressin receptors determines the interaction with β-arrestin and their trafficking patterns. Proc Natl Acad Sci U S A 101:1548–1553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Schmidt A, Wiesner B, Weisshart K et al (2009) Use of Kaede fusions to visualize recycling of G protein-coupled receptors. Traffic 10:2–15

    Article  CAS  PubMed  Google Scholar 

  32. Juliano RL, Carver K, Cao C et al (2013) Receptors, endocytosis, and trafficking: the biological basis of targeted delivery of antisense and siRNA oligonucleotides. J Drug Target 21:27–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Westendorf C, Schmidt A, Coin I et al (2011) Inhibition of biosynthesis of human endothelin B receptor by the cyclodepsipeptide cotransin. J Biol Chem 286:35588–35600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Elson EL (2001) Fluorescence correlation spectroscopy measures molecular transport in cells. Traffic 2:789–796

    Article  CAS  PubMed  Google Scholar 

  35. Rigler R, Mets U, Widengren J et al (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175

    CAS  Google Scholar 

  36. Haustein E, Schwille P (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29: 153–166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Claudia Rutz for useful discussions and help in preparing the experiments. Jenny Eichhorst helped in analyzing the microscopic data and Bettina Kahlich in cell culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Teichmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schmidt, A., Wiesner, B., Schülein, R., Teichmann, A. (2014). Use of Kaede and Kikume Green–Red Fusions for Live Cell Imaging of G Protein-Coupled Receptors. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics