Skip to main content

Introduction to Hidden Markov Models and Its Applications in Biology

  • Protocol
  • First Online:
Hidden Markov Models

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1552))

Abstract

A number of real-world systems have common underlying patterns among them and deducing these patterns is important for us in order to understand the environment around us. These patterns in some instances are apparent upon observation while in many others especially those found in nature are well hidden. Moreover, the inherent stochasticity in these systems introduces sufficient noise that we need models capable to handling it in order to decipher the underlying pattern. Hidden Markov model (HMM) is a probabilistic model that is frequently used for studying the hidden patterns in an observed sequence or sets of observed sequences. Since its conception in the late 1960s it has been extensively applied in biology to capture patterns in various disciplines ranging from small DNA and protein molecules, their structure and architecture that forms the basis of life to multicellular levels such as movement analysis in humans. This chapter aims at a gentle introduction to the theory of HMM, the statistical problems usually associated with HMMs and their uses in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghahramani Z, (2001) An introduction to hidden Markov models and Bayesian networks. Int J Pattern Recognit Artif Intell 15(1): 9–42. doi: 10.1142/S0218001401000836

    Google Scholar 

  2. Baum LE, Petrie T (1966) Statistical inference for probabilistic functions of finite state Markov chains. Ann Math Statist 37(6):1554–1563. doi:10.1214/aoms/1177699147

    Article  Google Scholar 

  3. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286. doi:10.1109/5.18626

    Article  Google Scholar 

  4. Schuster-Bockler B, Bateman A (2007) An introduction to hidden Markov models. Current protocols in bioinformatics/editoral board, Andreas D. Baxevanis [et al] Appendix 3:Appendix 3A. doi:10.1002/0471250953.bia03as18

  5. Yoon BJ (2009) Hidden Markov models and their applications in biological sequence analysis. Curr Genomics 10(6):402–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Durbin R, Eddy S, Krogh A, Mitchison G (2006) Biological sequence analysis. doi:citeulike-article-id:3346650

    Google Scholar 

  7. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580. doi:10.1006/jmbi.2000.4315

    Article  CAS  PubMed  Google Scholar 

  8. Shukla D, Hernandez CX, Weber JK, Pande VS (2015) Markov state models provide insights into dynamic modulation of protein function. Acc Chem Res 48(2):414–422. doi:10.1021/ar5002999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Won KJ, Hamelryck T, Pruegel-Bennett A, Krogh A (2007) An evolutionary method for learning HMM structure: prediction of protein secondary structure. BMC Bioinformatics 8:357. doi:10.1186/1471-2105-8-357

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stanke M, Waack S (2003) Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19:Ii215–Ii225. doi:10.1093/bioinformatics/btg1080

    Article  PubMed  Google Scholar 

  11. Bian JW, Liu CL, Wang HY, Xing J, Kachroo P, Zhou XB (2013) SNVHMM: predicting single nucleotide variants from next generation sequencing. BMC Bioinformatics 14:225. doi:10.1186/1471-2105-14-225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seiser EL, Innocenti F (2014) Hidden Markov model-Based CNV detection algorithms for illumina genotyping microarrays. Cancer Inform 13(Suppl 7):77–83. doi:10.4137/CIN.S16345

    PubMed  Google Scholar 

  13. Bao Y, Vinciotti V, Wit E, t Hoen PA (2014) Joint modeling of ChIP-seq data via a Markov random field model. Biostatistics 15(2):296–310. doi:10.1093/biostatistics/kxt047

    Article  PubMed  Google Scholar 

  14. Okamoto K, Sako Y (2012) Variational Bayes analysis of a photon-based hidden Markov model for single-molecule FRET trajectories. Biophys J 103(6):1315–1324. doi:10.1016/j.bpj.2012.07.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arakawa T, Tanave A, Ikeuchi S, Takahashi A, Kakihara S, Kimura S, Sugimoto H, Asada N, Shiroishi T, Tomihara K, Tsuchiya T, Koide T (2014) A male-specific QTL for social interaction behavior in mice mapped with automated pattern detection by a hidden Markov model incorporated into newly developed freeware. J Neurosci Methods 234:127–134. doi:10.1016/j.jneumeth.2014.04.012

    Article  PubMed  Google Scholar 

  16. Karg M, Venture G, Hoey J, Kulic D (2014) Human movement analysis as a measure for fatigue: a hidden Markov-based approach. IEEE Trans Neural Syst Rehabil Eng 22(3):470–481. doi:10.1109/TNSRE.2013.2291327

    Article  PubMed  Google Scholar 

  17. Jr. GDF (2005) The Viterbi algorithm: a personal history. CoRR abs/cs/0504020

    Google Scholar 

  18. Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inform Theory 13(2):260–269. doi:10.1109/tit.1967.1054010

    Article  Google Scholar 

  19. Welch LR (2003) Hidden Markov models and the Baum-Welch algorithm. IEEE Inform Theory Soc Newsl 53(4):10–13

    Google Scholar 

  20. Eddy SR (1996) Hidden markov models. Curr Opin Struct Biol 6(3):361–365

    Article  CAS  PubMed  Google Scholar 

  21. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14(9):755–763

    Article  CAS  PubMed  Google Scholar 

  22. Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR (2015) HMMER web server: 2015 update. Nucleic Acids Res 43(W1):W30–W38. doi:10.1093/nar/gkv397

    Article  PubMed  PubMed Central  Google Scholar 

  23. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39(Web Server issue):W29–W37. doi:10.1093/nar/gkr367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Vijayabaskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Vijayabaskar, M.S. (2017). Introduction to Hidden Markov Models and Its Applications in Biology. In: Westhead, D., Vijayabaskar, M. (eds) Hidden Markov Models. Methods in Molecular Biology, vol 1552. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6753-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6753-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6751-3

  • Online ISBN: 978-1-4939-6753-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics