Skip to main content

Differential Gene Expression (DEX) and Alternative Splicing Events (ASE) for Temporal Dynamic Processes Using HMMs and Hierarchical Bayesian Modeling Approaches

  • Protocol
  • First Online:
Hidden Markov Models

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1552))

Abstract

In gene expression profile, data analysis pipeline is categorized into four levels, major downstream tasks, i.e., (1) identification of differential expression; (2) clustering co-expression patterns; (3) classification of subtypes of samples; and (4) detection of genetic regulatory networks, are performed posterior to preprocessing procedure such as normalization techniques. To be more specific, temporal dynamic gene expression data has its inherent feature, namely, two neighboring time points (previous and current state) are highly correlated with each other, compared to static expression data which samples are assumed as independent individuals. In this chapter, we demonstrate how HMMs and hierarchical Bayesian modeling methods capture the horizontal time dependency structures in time series expression profiles by focusing on the identification of differential expression. In addition, those differential expression genes and transcript variant isoforms over time detected in core prerequisite steps can be generally further applied in detection of genetic regulatory networks to comprehensively uncover dynamic repertoires in the aspects of system biology as the coupled framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher RA (1941) The interpretation of experimental four-fold tables. Science 94:210–211. doi:10.1126/science.94.2435.210

    Article  CAS  PubMed  Google Scholar 

  2. Wang L, Feng Z, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. doi:10.1093/bioinformatics/btp612

    Article  PubMed  Google Scholar 

  3. Robinson MD, Mccarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi:10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  4. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. doi:10.1186/gb-2010-11-10-r106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hardcastle TJ, Kelly KA (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11:422. doi:10.1186/1471-2105-11-422

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bullard JH, Purdom E, Hansen KD, Dudoit S (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11:94. doi:10.1186/1471-2105-11-94

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bar-Joseph Z, Gerber G, Simon I, Gifford DK, Jaakkola TS (2003) Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proc Natl Acad Sci U S A 100(18):10146–10151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ramoni MF, Sebastiani P, Kohane IS (2002) Cluster analysis of gene expression dynamics. Proc Natl Acad Sci U S A 99(14):9121–9126. doi:10.1073/pnas.132656399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu F, Shi L, Li H, Eksi R, Engel JD, Guan Y (2014) Modeling dynamic functional relationship networks and application to ex vivo human erythroid differentiation. Bioinformatics 30(23):3325–3333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jo K, Kwon HB, Kim S (2014) Time-series RNA-seq analysis package (TRAP) and its application to the analysis of rice, Oryza sativa L. ssp. Japonica, upon drought stress. Methods 67(3):364–372. doi:10.1016/j.ymeth.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  11. Sîrbu A, Kerr G, Crane M, Ruskin HJ (2012) RNA-Seq vs dual- and single-channel microarray data: sensitivity analysis for differential expression and clustering. PloS One 7(12):e50986. doi:10.1371/journal.pone.0050986

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oh S, Song S, Grabowski G, Zhao H, Noonan JP (2013) Time series expression analyses using RNA-seq: a statistical approach. Biomed Res Int. doi:10.1155/2013/203681

  13. Lu ZK, Allen, OB, Desmond AF (2012) An order estimation based approach to identify response genes for microarray time course data. Stat Appl Genet Mol Biol 11(65). doi:10.1515/1544-6115.1818

  14. Sundar AS, Varghese SM, Shameer K, Karaba N, Udayakumar M, Sowdhamini R (2008) STIF: Identification of stress-upregulated transcription factor binding sites in Arabidopsis thaliana. Bioinformatics 2(10):431–437

    Google Scholar 

  15. Newton R, Hinds J, Wernisch L (2006) A Hidden Markov model web application for analysing bacterial genomotyping DNA microarray experiments. Appl Bioinformatics 5(4):211–218

    Article  CAS  PubMed  Google Scholar 

  16. Lu J, Bushel PR (2013) Dynamic expression of 3′ UTRs revealed by Poisson hidden Markov modeling of RNA-Seq: implications in gene expression profiling. Gene 527(2):616–623. doi:10.1016/j.gene.2013.06.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thorne T, Stumpf MP (2012) Inference of temporally varying Bayesian networks. Bioinformatics 28(24):3298–3305. doi:10.1093/bioinformatics/bts614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schliep A, Schönhuth A, Steinhoff C (2003) Using hidden Markov models to analyze gene expression time course data. Bioinformatics 19:255–263

    Article  Google Scholar 

  19. Nueda MJ, Tarazona S, Conesa A (2014) Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics 30(18):2598–2602. doi:10.1093/bioinformatics/btu333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan M, Kendziorski C (2006) Hidden Markov models for microarray time course data in multiple biological conditions. J Am Stat Assoc 101(476):1323–1332. doi:10.1198/016214505000000394

    Article  CAS  Google Scholar 

  21. Niu L, Huang W, Umbach DM, Li L (2014) IUTA: a tool for effectively detecting differential isoform usage from RNA-Seq data. BMC Genomics 15(1):862

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yuan X, Zhao Y, Liu C, Bu D (2011) Lex-SVM: exploring the potential of exon expression profiling for disease classification. J Bioinform Comput Biol 9(2):299–316

    Article  CAS  PubMed  Google Scholar 

  23. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320(5881):1344–1349. doi:10.1126/science.1158441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cho S, Lee JW, Heo JS, Kim SY (2014) Gene expression change in human dental pulp cells exposed to a low-level toxic concentration of triethylene glycol dimethacrylate: an RNA-seq analysis. Basic Clin Pharmacol Toxicol 115(3):282–290. doi:10.1111/bcpt.12197

    Article  CAS  PubMed  Google Scholar 

  25. Rezaei V, Pezeshk H, Pérez-Sa'nchez H (2013) Generalized Baum-Welch algorithm based on the similarity between sequences. PloS One 8(12):e80565. doi:10.1371/journal.pone.0080565

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vogl C, Futschik A (2010) Hidden Markov models in biology. Methods Mol Biol 609:241–253. doi:10.1007/978-1-60327-241-4_14

    Article  CAS  PubMed  Google Scholar 

  27. Wikipedia Baum-Welch Algorithms

    Google Scholar 

  28. Do K, Ml P, Tang F (2005) A Bayesian mixture model for differential gene expression. Appl Stat 54(3):627–644

    Google Scholar 

  29. Guindani M, Sepúlveda N, Paulino CD, Müller P (2014) A Bayesian semi-parametric approach for the differential analysis of sequence counts data. J R Stat Soc C 63(3):385–404

    Article  Google Scholar 

  30. Nance T, Smith KS, Anaya V, Richardson R, Ho L, Pala M, Mostafavi S, Battle A, Feghali-Bostwick C, Rosen G, Montgomery SB (2014) Transcriptome analysis reveals differential splicing events in IPF lung tissue. PLoS One 9(5). doi:10.1371/journal.pone.0097550

  31. Nance T, Smith KS, Anaya V, Richardson R, Ho L, Pala M, Mostafavi S, Battle A, Feghali-Bostwick C, Rosen G, Montgomery SB (2014) Transcriptome analysis reveals differential splicing events in IPF lung tissue. PLoS One 9(3). doi:10.1371/journal.pone.0092111

  32. Iacobucci I, Ferrarini A, Sazzini M, Giacomelli E, Lonetti A, Xumerle L, Ferrari A, Papayannidis C, Malerba G, Luiselli D, Boattini A, Garagnani P, Vitale A, Soverini S, Pane F, Baccarani M, Delledonne M, Martinelli G (2012) Application of the whole-transcriptome shotgun sequencing approach to the study of Philadelphia-positive acute lymphoblastic leukemia. Blood Cancer J 2(3):e61. doi:10.1038/bcj.2012.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Atkins N, Miller CM, Owens JR, Turek FW (2011) Non-laser capture microscopy approach for the microdissection of discrete mouse brain regions for total RNA isolation and downstream next-generation sequencing and gene expression profiling. J Vis Exp (57). doi:10.3791/3125

  34. Twine NA, Janitz K, Wilkins MR, Janitz M (2011) Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer’s disease. PLoS One 6(1):e16266. doi:10.1371/journal.pone.0016266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghee Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Oh, S., Song, S. (2017). Differential Gene Expression (DEX) and Alternative Splicing Events (ASE) for Temporal Dynamic Processes Using HMMs and Hierarchical Bayesian Modeling Approaches. In: Westhead, D., Vijayabaskar, M. (eds) Hidden Markov Models. Methods in Molecular Biology, vol 1552. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6753-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6753-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6751-3

  • Online ISBN: 978-1-4939-6753-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics