Skip to main content

Very Strong But Reversible Immobilization of Enzymes on Supports Coated With Ionic Polymers

  • Protocol
Immobilization of Enzymes and Cells

Abstract

In this chapter, the properties of tailor-made anionic exchanger resins based on films of large polyethylenimine polymers (e.g., molecular weight 25,000) as supports for strong but reversible immobilization of proteins is shown. The polymer is completely coated, via covalent immobilization, the surface of different porous supports. Proteins can interact with this polymeric bed, involving a large percentage of the protein surface in the adsorption. Different enzymes have been very strongly adsorbed on these supports, retaining enzyme activities. On the other hand, adsorption is very strong and the derivatives may be used under a wide range of pH and ionic strengths. These supports may be useful even to stabilize multimeric enzymes, by involving several enzyme subunits in the immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosevear A. (1984) Immobilized biocatalysts: a critical review. J. Chem. Technol. Biotechnol. 34B, 127–150.

    CAS  Google Scholar 

  2. Royer G. P. (1980) Immobilized enzymes as catalysts. Catal. Rev. 22, 29–73.

    Article  CAS  Google Scholar 

  3. Klivanov A. M. (1983) Immobilized enzymes and cells as practical catalysts. Science. 219, 722–727.

    Article  Google Scholar 

  4. Hartmeier W. (1985) Immobilized biocatalysts: from simple to complex systems. Trends Biotechnol. 3, 149–153.

    Article  CAS  Google Scholar 

  5. Kennedy J. F., Melo E. H. M., and Jumel K. (1990) Immobilized enzymes and cells. Chem. Eng. Prog. 45, 81–89.

    Google Scholar 

  6. Katchalski-Katzir E. (1993) Immobilized enzymes: learning from past successes and failures. Trends Biotechnol. 11, 471–478.

    Article  CAS  Google Scholar 

  7. Chibata I., Tosa T., and Sato T. (1986) Biocatalysis: immobilized cells and enzymes. J. Mol. Catal. 37, 1–24.

    Article  CAS  Google Scholar 

  8. Gupta M. N. (1991) Thermostabilization of proteins. Biotechnol. Appl. Biochem. 14, 1–11.

    Google Scholar 

  9. Mateo C., Abian O., Fernández-Lafuente R., and Guisán J. M. (2000) Reversible enzyme immobilization via a very strong and nondistorting ionic adsorption on support Polyethylenimine supports. Biotechnol. Bioeng. 7, 98–105.

    Article  Google Scholar 

  10. Pessela B. C. C., Fernández-lafuente R., Fuentes M., et al. (2003) Reversible immobilization of a thermophilic β-galactosidase via ionic adsorption on PEIcoated sepabeads. Enzyme Microb. Technol. 32, 369–374.

    Article  CAS  Google Scholar 

  11. Fuentes M., Maquiese J., Pessela B. C. C., Abian A., Fernández-Lafuente R., Mateo C., and Guisán J. M. (2004). New cationic exchanger support for reversible immobilization of proteins. Biotechnol Prog. 20, 284–288.

    Article  CAS  Google Scholar 

  12. Fuentes M. Pessela B. C. C., Maquiese J., et al. (2004) Reversible and strong immobilization of proteins by ionic exchange on supports coated with sulfatedextran. Biotechnol Prog. 20, 1134–1139.

    Article  CAS  Google Scholar 

  13. Batista-Viera F., Barbieri M., Ovsejevi K., Manta C., and Carlsson J. (1991) A new method for reversible immobilization of thiol biomolecules based on solidphase bound thiosulfonate groups. Appl. Biochem. Biotechnol. 31, 175–195.

    Article  CAS  Google Scholar 

  14. Batista-Viera F., Brena B., and Luna B. (1988) Reversible immobilization of soybean amylase on phenylboronate-agarose. Biotechnol. Bioeng. 31, 711–713.

    Article  CAS  Google Scholar 

  15. Brena B., Ovsejevi K., Luna B., and Batista-Viera F. (1993) Thiolation and reversible immobilization of sweet potato amylase on thiosulfonate agarose. J. Mol. Catal. 84, 381–390.

    Article  CAS  Google Scholar 

  16. Chibata I. and Tosa T. (1976) Industrial applications of immobilized enzymes and immobilized microbial cells. In: Applied Biochemistry and Bioengineering: Immobilized Enzyme Principles vol 1 (Wingard, Katchalski, Goldstein, eds.) London, pp. 239–260.

    Google Scholar 

  17. Torres R., Pessela B. C. C., Mateo C., et al. (2004) Reversible immobilization of glucoamylase by ionic adsorption on sepabeads coated with polyethyleneimine. Biotechnol. Progr. 20, 1297–1300.

    Google Scholar 

  18. Tammi M., Ballou L., Taylor A., and Ballou C. (1987) Effect of glycosylation on yeast invertase oligomer stability. J. Biol. Chem. 262, 4395–4401.

    CAS  Google Scholar 

  19. Chu F. K., Watorek W, and Maley F. (1983) Factors affecting the oligomeric structure of yeast external invertase. Arch. Biochem. Biophys. 223, 543–555.

    Article  CAS  Google Scholar 

  20. Reddy A. V., MacColl R., and Maley F. (1990) Effect of oligosaccharides on oligomeric structures of external, internal and deglycosylated invertase. Biochemistry. 29, 2482–2487.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Mateo, C. et al. (2006). Very Strong But Reversible Immobilization of Enzymes on Supports Coated With Ionic Polymers. In: Guisan, J.M. (eds) Immobilization of Enzymes and Cells. Methods in Biotechnology™, vol 22. Humana Press. https://doi.org/10.1007/978-1-59745-053-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-053-9_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-290-2

  • Online ISBN: 978-1-59745-053-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics