Skip to main content

Receptor Flexibility for Large-Scale In Silico Ligand Screens

Chances and Challenges

  • Protocol
Molecular Modeling of Proteins

Part of the book series: Methods Molecular Biology™ ((MIMB,volume 443))

Summary

An important contribution to today's computer-aided drug design is the automated screening of large compound databases against structurally resolved protein receptors targets. The introduction of ligand flexibility has, by now, become a standardized procedure. In contrast, a general approach to treat target degrees of freedom is still to be found, a consequence of the extreme increase of computational complexity, which comes along with the relaxation of protein degrees of freedom.

In this chapter, we discuss in some detail both benefits and present limitations of target flexibility for high-throughput in silico database screens. Among the benefits are an improved diversity of binding modes, which allows one to identify a wider class of drug candidates. The limitations are related to a diminishing docking accuracy and an increased number of false hits. Using the thymidine kinase receptor and ten known inhibitors as an example, we describe in detail how target flexibility was implemented and how it affected the screening performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Fischer, E. (1894) Einfluss der Konfiguration auf die Wirkung der Enzyme. Ber. Dtsch. Chem. Ges. 27:2985–2993

    Article  CAS  Google Scholar 

  2. 2. Cramer III, R.D., Patterson, D.E. and Bunce, J.D. (1998) Comparative molecular field analysis (comfa). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110:5959–5967

    Article  Google Scholar 

  3. 3. Abagyan, R. and Totrov, M. (2001) High-throughput docking for lead generation. Curr. Opin. Chem. Biol. 5:375–382

    Article  CAS  PubMed  Google Scholar 

  4. 4. Merlitz, H., Burghardt, B. and Wenzel, W. (2003) Application of the stochastic tunneling method to high throughput database screening. Chem. Phys. Lett. 370:68–73

    Article  CAS  Google Scholar 

  5. 5. Jorgensen, W.L. and McDonald, N.A. (1997) Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. Theochem-J. Mol. Struct. 424:145–155

    Article  Google Scholar 

  6. 6. Morris, G.M., Goodsell, D.S., Halliday, R., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J. (1998) Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19:1639–1662

    Article  CAS  Google Scholar 

  7. 7. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by simulated annealing. Science 220:671–680

    Article  CAS  PubMed  Google Scholar 

  8. 8. Metropolis, N. and Stanislaw, U. (1949) The Monte Carlo method. JASA 44:335–341

    CAS  PubMed  Google Scholar 

  9. 9. Merlitz, H., Herges, T. and Wenzel, W. (2004) Fluctuation analysis and accuracy of a largescale in silico screen. J. Comp. Chem. 25:1568–1575

    Article  CAS  Google Scholar 

  10. 10. Wenzel, W. and Hamacher, K. (1999) Stochastic tunneling approach for global optimization of complex potential energy landscapes. Phys. Rev. Lett. 82:3003–3007

    Article  CAS  Google Scholar 

  11. 11. Merlitz, H. and Wenzel, W. (2002) Comparison of stochastic optimization methods for receptor-ligand docking. Chem. Phys. Lett. 362:271–277

    Article  CAS  Google Scholar 

  12. 12. Bissantz, C., Folkerts, G. and Rognan, D. (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J. Med. Chem. 43:4759–4767

    Article  CAS  PubMed  Google Scholar 

  13. 13. Merlitz, H. and Wenzel, W. (2004) Impact of receptor flexibility on in silico screening performance. Chem. Phys. Lett. 390:500–505

    Article  CAS  Google Scholar 

  14. 14. Milne, G.W.A., Nicklaus, M.C., Driscoll, J.S., Zaharevitz, D. and Wang, S. (1994) National cancer institute drug information system 3d database. J. Chem. Inf. Comput. Sci. 34:1219–1224

    CAS  PubMed  Google Scholar 

  15. 15. Shi, S., Yan, L., Yang, Y., Fisher-Shaulsky, J. and Thacher, T. (2003) An extensible and systematic force field, ESFF, for molecular modeling of organic, inorganic, and organometallic systems. J. Comput. Chem. 24:1059–1076

    Article  CAS  PubMed  Google Scholar 

  16. 16. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, Jr. M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977) The Protein Data Bank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 112:535–542

    Article  CAS  PubMed  Google Scholar 

  17. 17. Vogt, J., Perozzo, R., Pautsch, A., Prota, A., Schelling, P., Pilger, P., Folkerts, G., Scapozza, L., and Schulz, G.E. (2000) Nucleoside binding site of herpes simplex type 1 thymidine kinase analyzed by x-ray crystallography. Proteins 42:545–553

    Article  Google Scholar 

  18. 18. Wurth, C., Kessler, U., Vogt, J., Schulz, G.E., Folkers, G. and Scapozza, L. (2001) The effect of substrate binding on the conformation and structural stability of herpes simplex virus type 1 thymidine kinase. Protein Sci. 10:60–73

    Article  Google Scholar 

  19. 19. Knegtel, R.M.A. and Wagnet, M. (1999) Efficacy and selectivity in flexible database docking. Proteins 37:334–345

    Article  CAS  PubMed  Google Scholar 

  20. Fischer, B., Merlitz, H. and Wenzel, W. (2005) Increasing diversity in in silico screening with target flexibility. CompLife 186–197

    Google Scholar 

Download references

Acknowledgments

We thank the Fond der Chemischen Industrie, the BMBF, the Deutsche Forschungsgemeinschaft (grant WE 1863/11-1), and the Kurt Eberhard Bode Stiftung for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Andreas Kukol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fischer, B., Merlitz, H., Wenzel, W. (2008). Receptor Flexibility for Large-Scale In Silico Ligand Screens. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods Molecular Biology™, vol 443. Humana Press. https://doi.org/10.1007/978-1-59745-177-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-177-2_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-864-5

  • Online ISBN: 978-1-59745-177-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics