Skip to main content

Cryopreservation of Desiccation-Tolerant Seeds

  • Protocol
Cryopreservation and Freeze-Drying Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 368))

Abstract

The cryopreservation of desiccation-tolerant seeds depends on two key steps: specimen dehydration in an environment that ensures the attainment of water contents below the high-moisture freezing limit; and transfer and maintenance at a subzero temperature that may be optimized in relation to the seed-lot moisture content and species. Temperatures about 70°C below the glass transition temperature (Tg–70) or lower are recommended for seed storage. For fully desiccation-tolerant (type I) seeds, cryopreservation success tends to be independent of cooling regime and subzero (°C) temperature treatment when the seeds are dry. However, to maximize recovery of partially desiccation-tolerant (type II) seeds there can be a requirement for slowcooling, avoidance of storage at certain subzero temperatures, and controlled imbibition following cryopreservation, particularly for endospermic seeds that are high in lipid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Secretariat of the Conventional on Biological Diversity (2002) Global Strategy for Plant Conservation. CBD, Montreal, Quebec.

    Google Scholar 

  2. Linington, S. H. and Pritchard, H. W. (2001) Genebanks. In: Encyclopedia of Biodiversity, Vol 3, (Levin, S., ed. in-chief), Academic Press, San Diego, CA, pp. 165–181.

    Google Scholar 

  3. Pritchard, H. W. and Dickie, J. B. (2003) Predicting seed longevity: use and abuse of seed viability equations. In: Seed Conservation: Turning Science into Practice, (Smith, R. D., Dickie, J., Linington, S. H., Pritchard, H. W., and Probert, R. J., eds.), Royal Botanic Gardens, Kew, UK, pp. 653–722.

    Google Scholar 

  4. Stanwood, P.C. (1985) Cryopreservation of seed germplasm for genetic conservation. In: Cryopreservation of Plant Cells and Organs, (Kartha, K. K., ed.), CRC Press, Boca Raton, FL, pp. 199–226.

    Google Scholar 

  5. Pritchard, H. W. (1995) Cryopreservation of seeds. In: Methods in Molecular Biology, vol 38, Cryopreservation and Freeze-Drying Protocols, (Day, J. G. and McLellan, M. R., eds.), Humana Press Inc., Totowa, NJ, pp. 133–144.

    Chapter  Google Scholar 

  6. Walters, C., Wheeler, L., and Stanwood, P. (2004) Longevity of cryogenically stored seeds. Cryobiology 48, 229–244.

    Article  Google Scholar 

  7. Pritchard, H. W. (2004) Classification of seed storage “types” for ex situ conservation in relation to temperature and moisture. In: Ex situ Plant Conservation: Supporting Species Survival in the Wild, (Guerrant, E. O., Havens, K., and Maunder, M., eds.), Island Press, Washington, DC, pp. 139–161.

    Google Scholar 

  8. Davies, R. I. and Pritchard, H. W. (1998) Seed storage and germination of the palms Hyphaene thebaica, H. petersiana and Medemia argun. Seed Sci. and Technol. 26, 823–828.

    Google Scholar 

  9. Pritchard, H. W. and Manger, K. R. (1998) A calorimetric perspective on desiccation stress during preservation procedures with recalcitrant seeds of Quercus robur. CryoLetters 19, 23–30.

    Google Scholar 

  10. Daws, M. L, Cleland, H., Chmielarz, P., et al. (2006) Variable desiccation tolerance in Acer pseudoplatanus seeds in relation to developmental conditions: a case of phenotypic recalcitrance? Functional Pl. Biol. 33, 59–66.

    Article  Google Scholar 

  11. Pritchard, H. W. and Daws, M. I. (2005) Continental scale studies on continental scale studies on patterns in seed desiccation sensitivity at the inter-and intraspecies level. In: Proceedings of the Fifth Australian Workshop on Native Seed Biology, (Adkins, S., Ainsley, P. J., Bellairs, S. M., Coates, D. J., and Bell, L. C., eds.), Autralian Centre for Minerals Extension and Research, QLD, pp. 147–156.

    Google Scholar 

  12. Pritchard, H. W., Sacandé, M., and Berjak, P. (2004) Biological aspects of tropical tree seed desiccation and storage responses. In: Comparative Storage Biology of Tropical Tree Seeds, (Sacandé, M., Joker, D., Dulloo, M. E., and Thomsen, K. A., eds.), IPGRI, Rome, Italy, pp. 319–341.

    Google Scholar 

  13. Pritchard, H. W., Wood, C. B., Hodges, S., and Vautier, H. J. (2004) 100-seed test for desiccation tolerance and germination: a case study on eight tropical palm species. Seed Sci. and Technol. 32, 393–403.

    Google Scholar 

  14. Buitink, J. and Leprince, O. (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48, 215–228.

    Article  CAS  Google Scholar 

  15. Walters, C. (2004) Temperature dependency of molecular mobility in preserved seeds. Biophys. J. 86, 1253–1258.

    Article  CAS  Google Scholar 

  16. Walters, C. (1998) Understanding the mechanisms and kinetics of seed aging. Seed Sci. Res. 8, 223–244.

    Article  CAS  Google Scholar 

  17. Pritchard, H. W. (2002) Cryopreservation and global warming! CryoLetters 23, 281–282.

    CAS  Google Scholar 

  18. Gonzalez-Benito, M. E., Carvalho, J. M. F. C., and Perez, C. (1998) Effect of desiccation and cryopreservation on the germination of embryonic axes and seeds of cotton. Pesquisa Agropecuaria Brasileira 33, 17–20.

    Google Scholar 

  19. Gonzalez-Benito, M. E. and Perez-Garcia, F. (2001) Cryopreservation of lipid-rich seeds: effect of moisture content and cooling rate on germination. CryoLetters 22, 135–140.

    CAS  Google Scholar 

  20. Pritchard, H. W., Poynter, A. C., and Seaton, P. T. (1999) Interspecific variation in orchid seed longevity in relation to ultra-drying and cryopreservation. Lindleyana 14, 92–101.

    Google Scholar 

  21. Perez-Garcia, F., Gonzalez-Benito, M. E., Perez, C., and Gomez-Campo, C. (1996) Effect of cryopreservation on Brassica seeds germination. Acta Horticulture 407, 255–260.

    Google Scholar 

  22. Gonzalez-Benito, M. E., Iriondo, J. M., Pita, J. M., and Perez-Garcia, F. (1995) Effects of seed priming on germination in several cultivars of Apium graveolens. Ann. Bot. 75, 1–4.

    Article  CAS  Google Scholar 

  23. Popov, A. S., Popova, E. V., Nikishina, T. V., and Kolomeytseva, G. L. (2004) The development of juvenile plants of the hybrid orchid Bratonia after seed cryopreservation. CryoLetters 25, 205–212.

    CAS  Google Scholar 

  24. Wood, C. B., Pritchard, H. W., and Miller, A. P. (2000) Simultaneous preservation of orchid seed and its fungal symbiont by encapsulation-dehydration is dependent on storage temperature and moisture content. CryoLetters 21, 125–136.

    Google Scholar 

  25. Wang, J. H., Ge, J. G., Feng, L., Bian, H. W., and Huang, N. (1998) Cryopreservation of seeds and protocorns of Dendrobium candidum. CryoLetters 19, 123–128.

    Google Scholar 

  26. Gonzalez-Benito, M. E., Iriondo, J. M., and Perez-Garcia, F. (1998) Seed cryopreservation: an alternative method for the conservation of Spanish endemics. Seed Sci. Technol. 26, 257–262.

    Google Scholar 

  27. Vernon, P., Vannier, G., and Arondel, V. (1999) Supercooling capacity of seeds and seedlings in Arabidopsis thaliana. Cryobiology 39, 138–143.

    Article  CAS  Google Scholar 

  28. Merritt, D. J., Senaratna, T., Touchell, D. H., Dixon, K. W., and Sivasithamparam, K. (2003) Seed ageing of four Western Australian species in relation to storage environment and seed antioxidant activity. Seed Sci. Res. 13, 155–165.

    Article  Google Scholar 

  29. Merritt, D. J., Touchell, D. H., Senaratna, T., Dixon, K. W., and Walters, W. (2005) Survival of four accessions of Anigozanthos manglesii (Haemodoraceae) seeds following exposure to liquid nitrogen. CryoLetters 26, 121–130.

    CAS  Google Scholar 

  30. Pence, V. C. and Clark, J. R. (2005) Desiccation, cryopreservation and germination of seeds of the rare wetland species, Plantago cordata Lam. Seed Sci. & Technol. 33, 767–770.

    Google Scholar 

  31. Wood, W., Pritchard, H. W., and Lindegaard, K. (2003) Seed cryopreservation and longevity of two Salix hybrids. CryoLetters 24, 17–26.

    Google Scholar 

  32. Nunes, E. D., Benson, E. E., Oltramari, A. C., Araujo, P. S., Moser, J. R., and Viana, A. M. (2003) In vitro conservation of Cedrela fissilis Vellozo (Meliaceae), a native tree of the Brazilian Atlantic Forest. Biodiv. Conserv. 12, 837–848.

    Article  Google Scholar 

  33. Pita, J. M., Sanz, V., and Escudero, A. (1998) Seed cryopreservation of seven Spanish native pine species. Silvae Genetica 47, 220–223.

    Google Scholar 

  34. Muthusamy, J., Staines, H. J., Benson, E. E., Mansor, M., and Krishnapillay, B. (2005) Investigating the use of fractional replication and taguchi techniques in cryopreservation: a case study using orthodox seeds of a tropical rainforest tree species. Biodiv. and Conserv. 14, 3169–3185.

    Article  Google Scholar 

  35. Pence, V. (1996) Germination, desiccation and cryopreservation of seeds of Populus deltoides Bartr. Seed Sci. and Technol. 24, 151–157.

    Google Scholar 

  36. Makeen, M. A., Noor, N. M., Dussert, S., and Clyde, M. M. (2005) Cryopreservation of whole seeds and excised embryonic axes of Citrus suhuiensis cv. limau langkat in accordance to their desiccation sensitivity. CryoLetters 26, 259–268.

    Google Scholar 

  37. Lambardi, M., De Carlo, A., Biricolti, S., et al. (2004) Zygotic and nucellar embryo survival following dehydration/cryopreservation of Citrus intact seeds. CryoLetters 25, 81–90.

    CAS  Google Scholar 

  38. Cho, E. G., Noor, N. M., Kim, H. H., Rao, V. R., and Engelmann, F. (2002) Cryopreservation of Citrus aurantifolia seeds and embryonic axes using a desiccation protocol. CryoLetters 23, 309–316.

    Google Scholar 

  39. Hor, Y. L., Kim, Y. J., Ugap, A., et al. (2005) Optimal hydration status for cryopreservation of intermediate oily seeds: Citrus as a case study. Ann. Bot. 95, 1153–1161.

    Article  CAS  Google Scholar 

  40. Berjak, P. and Dumet, D. (1996) Cryopreservation of seeds and isolated embryonic axes of neem (Azadirachta indica). CryoLetters 17, 99–104.

    Google Scholar 

  41. Vasquez, N., Salazar, K., Anthony, F., Chabrillange, N., Engelmann, F., and Dussert, S. (2005) Variability in response of seeds to liquid nitrogen exposure in wild coffee (Coffea arabica L.). Seed Sci. Technol. 33, 293–301.

    Google Scholar 

  42. Dussert, S., Chabrillange, N., Montillet, J. L., Agnel, J. P., Engelmann, F., and Noirot, M. (2003) Basis of coffee seed sensitivity to liquid nitrogen exposure: oxidative stress or imbibitional damage? Physiol. Plant. 119, 534–543.

    Article  CAS  Google Scholar 

  43. Dussert, S., Chabrillange, N., Rocquelin, G., Engelmann, F., Lopez, M., and Hamon, S. (2001) Tolerance of coffee (Coffea spp.) seeds to ultra-low temperature exposure in relation to calorimetric properties of tissue water, lipid composition, and cooling procedure. Physiol. Plant. 112, 495–504.

    Article  CAS  Google Scholar 

  44. Dussert, S., Chabrillange, N., Vasquez, N., et al. (2000) Beneficial effect of post-thawing osmo-conditioning on the recovery of cryopreserved coffee (Coffea arabica L.) seeds. CryoLetters 21, 47–52.

    Google Scholar 

  45. Dussert, S., Chabrillange, N., Engelmann, F., Anthony, F., Louarn, J., and Hamon, S. (1998) Cryopreservation of seeds of four coffee species (Coffea arabica, costatifructa, racemosa and C. sessiliflora): importance of water content and cooling rate. Seed Sci. Res. 8, 9–15.

    Article  Google Scholar 

  46. Dussert, S., Chabrillange, N., Engelmann, F., Anthony, F., and Hamon, S. (1997) Cryopreservation of coffee (Coffea arabica L.) seeds: Importance of the pre-cooling temperature. CryoLetters 18, 269–276.

    Google Scholar 

  47. Engelmann, F., Chabrillange, N., Dussert, S., and Duval, Y. (1995) Cryopreservation of zygotic embryos and kernels of oil palm (Elaeis guineensis Jacq). Seed Sci. Res. 5, 81–86.

    Article  Google Scholar 

  48. Decruse, S. W. and Seeni, S. (2003) Seed cryopreservation is a suitable storage procedure for a range of Piper species. Seed Sci. Technol. 31, 213–217.

    Google Scholar 

  49. Kioko, J., Berjak, P., Pritchard, H., and Daws, M. (1999) Seeds of the African pepper bark (Warburgia salutaris) can be cryopreserved after rapid dehydration in silica gel. In: Cryopreservation of Tropical Plant Germplasm: Current Research Progress and Application, (Engelmann, F. and Takagi, H., eds.), Japan International Research Centre for Agricultural Sciences, Tsukuba, Japan / IPGRI, Rome, Italy, pp. 371–377.

    Google Scholar 

  50. Wood, C. B., Miles, S., Rix, C., Terry, J., and Daws, M. I. (2005) The effect of seed oil content on viability assessment using tetrazolium: a case study using 171 species. Plant Genetic Res. Newsl. 143, 17–23.

    Google Scholar 

  51. Sun, W. Q. (2002) Methods for the study of water relations under desiccation stress. In: Desiccation and Survival in Plants: Drying Without Dying, (Black, M. and Pritchard, H. W., eds.), CABI Publishing, Wallingford, Oxon, UK, pp. 47–91.

    Chapter  Google Scholar 

  52. Dickie, J. B. and Smith, R. D. (1995) Observations on the survival of seeds of Agathis spp. stored at low moisture contents and temperatures. Seed Sci. Res. 5, 5–14.

    Article  Google Scholar 

  53. Ellis, R. H., Hong, T. D., and Roberts, E. H. (1991) Effect of storage temperature and moisture on the germination of papaya seeds. Seed Sci. Res. 1, 69–72.

    Google Scholar 

  54. Ellis, R. H., Hong, T. D., and Roberts, E. H. (1990) An intermediate category of seed storage behaviour? I. Coffee. J. Exp. Bot. 41, 1167–1174.

    Article  Google Scholar 

  55. Daws, M. L, Gamene, S., Sacande, M., Pritchard, H. W., Groot, S. P. and Hoekstra, F. (2004) Desiccation and storage of Lannea microcarpa seeds from Burkina Faso. In: Comparative Storage Biology of Tropical Tree Seeds, (Sacandé, M., Joker, D., Dulloo, M. E., and Thomsen, K. A. eds.), IPGRI-DFCS, Italy and Denmark, pp. 32–39.

    Google Scholar 

  56. Ellis, R. H., Hong, T. D., Roberts, E. H., and Soetisna, U. (1991) Seed storage behaviour in Elaeis guineensis. Seed Sci. Res. 1, 99–104.

    Google Scholar 

  57. Hong, T. D. and Ellis, R. H. (1998) Contrasting seed storage behaviour among different species of Meliaceae. Seed Sci. and Technol. 26, 77–95.

    Google Scholar 

  58. Pritchard, H. W., Wood, C.B., Amritphale, D., Magill, W., and Benson, E. E. (1999) Freezing-induced dormancy in dried Carica papaya seeds: a new cryobiological syndrome? Cryobiology 38, 308.

    Google Scholar 

  59. Leprince, O., van Aelst, A. C., Pritchard, H. W., and Murphy, D. J. (1998) Oleosins prevent oil-body coalescence during seed imbibition as suggested by a low-temperature scanning electron microscope study of desiccation-tolerant and-sensitive oilseeds. Planta 204, 109–119.

    Article  CAS  Google Scholar 

  60. Sacande, M., Hoekstra, F., van Pijlen, J. G., and Groot, S. P. (1998) A multi-factorial study of conditions influencing neem (Azadirachta indica) seed storage longevity. Seed Sci. Res. 8, 473–482.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Pritchard, H.W. (2007). Cryopreservation of Desiccation-Tolerant Seeds. In: Day, J.G., Stacey, G.N. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology™, vol 368. Humana Press. https://doi.org/10.1007/978-1-59745-362-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-362-2_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-377-0

  • Online ISBN: 978-1-59745-362-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics