Skip to main content

Numerical Modeling in the Design and Evaluation of Scaffolds for Orthopaedics Applications

  • Protocol
  • First Online:
Computer-Aided Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 868))

  • 2587 Accesses

Abstract

Numerical modeling becomes a very useful tool for design and preclinical evaluation of scaffold for tissue engineering. This chapter illustrates, how finite element analysis and genetic algorithm maybe applied to predict the mechanical performance of novel scaffolds, with a honeycomb-like pattern, a fully interconnected channel network, and controllable porosity fabricated in layers of directionally aligned microfibers deposited using a computer-controlled extrusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baroni S, Gironcoli S, Dal CA, Giannozzi P (2001) Rev. Mod Phys 73:515

    Article  CAS  Google Scholar 

  2. Kurzydlowski KJ (2009) Proceedings of LMT, Brisbane, 2009

    Google Scholar 

  3. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Google Scholar 

  4. Zienkiewicz OC, Taylor RJ (eds) (2000) Finite element method. Butterworth Heinemann, Oxford

    Google Scholar 

  5. Swieszkowski W, Ku D, Bersee H, Kurzydlowski KJ (2006) An elastic material for cartilage replacement in arthritic shoulder joint. Biomaterials 27:1534–1541

    Article  CAS  Google Scholar 

  6. Rundell SA, Auerbach JD, Balderston RA, Kurtz SM (2008) Total disc replacement positioning affects facet contact forces and vertebral body strains. Spine 33(23):2510–2517

    Article  Google Scholar 

  7. del Palomar AP, Calvo B, Doblaré M (2008) An accurate finite element model of the cervical spine under quasi-static loading. J Biomech 41(3):523–531

    Article  Google Scholar 

  8. Balac I, Milovanevic M, Tang Ch, Uskokovic PS, Uskokovic DP (2004) Estimation of elastic properties of a particulate polymer composite using a face-centered cubic FE model. Mater Lett 58(19):2437–2441

    Article  CAS  Google Scholar 

  9. Pauwels F (1960) A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. The tenth contribution to the functional anatomy and causal morphology of the supporting structure. Z Anat Entwicklungsgesch 121:478–515

    Article  CAS  Google Scholar 

  10. Prendergast PJ, Huiskes R, Soballe K (1997) ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30(6):539–548

    Article  CAS  Google Scholar 

  11. Carter DR, Beaupre GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355(Suppl):S41–S55 (review)

    Google Scholar 

  12. Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32(3):255–266

    Article  CAS  Google Scholar 

  13. Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35(9):1163–1171

    Article  CAS  Google Scholar 

  14. Shefelbine SJ, Augat P, Claes L, Simon U (2005) Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J Biomech 38(12):2440–2450

    Article  Google Scholar 

  15. Isaksson H, Wilson W, van Donkelaar CC, Huiskes R, Ito K (2006) Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J Biomech 39(8):1507–1516

    Article  Google Scholar 

  16. Gomez-Benito MJ, Garcia-Aznar JM, Kuiper JH, Doblare M (2005) Influence of fracture gap size on the pattern of long bone healing: a computational study. J Theor Biol 235(1):105–119

    Article  CAS  Google Scholar 

  17. Isaksson H, Comas O, van Donkelaar CC, Mediavilla J, Wilson W, Huiskes R, Ito K (2007) Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J Biomech 40 (9):2002–2011

    Google Scholar 

  18. Kelly DJ, Prendergast PJ (2005) Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J Biomech 38(7):1413–1422

    Article  CAS  Google Scholar 

  19. Andreykiv A, Prendergast PJ, van Keulen F, Swieszkowski W, Rozing PM (2005) Bone ingrowth simulation for a concept glenoid component design. J Biomech 38(5):1023–1033

    Article  CAS  Google Scholar 

  20. Kelly DJ, Prendergast PJ (2006) Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng 12(9):2509–2519

    Article  CAS  Google Scholar 

  21. Adachi T, Osako Y, Tanaka M, Hojo M, Hollister SJ (2006) Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964–3972

    Article  CAS  Google Scholar 

  22. Ament C, Hofer EP (2000) A fuzzy logic model of fracture healing. J Biomech 33(8):961–968

    Article  CAS  Google Scholar 

  23. Epari DR, Taylor WR, Heller MO, Duda GN (2006) Mechanical conditions in the initial phase of bone healing. Clin Biomech (Bristol, Avon) 21(6):646–655

    Google Scholar 

  24. Bailon-Plaza A, van der Meulen MC (2001) A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212(2):191–209

    Article  CAS  Google Scholar 

  25. Olsen L, Sherratt JA, Maini PK, Arnold F (1997) A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J Math Appl Med Biol 14(4):261–281

    Article  CAS  Google Scholar 

  26. Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25

    Article  CAS  Google Scholar 

  27. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  CAS  Google Scholar 

  28. Heljak M, Swieszkowski W, Lam CXF, Hutmacher DW, Kurzydlowski KJ (2008) Numerical analyses of the polymeric scaffolds for bone tissue engineering. Tissue Eng A 14:890

    Google Scholar 

  29. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopaedics devices. Biomaterials 21:2335–2346

    Article  CAS  Google Scholar 

  30. Goetzen N, Lampe F, Nassut R, Morlock MM (2005) Load-shift-numerical evaluation of a new design philosophy for uncemented hip prostheses. J Biomech 38:595–604

    Article  Google Scholar 

  31. Zein I et al (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185

    Article  CAS  Google Scholar 

  32. Mow C, Huiskes R (2004) Basic orthopaedics biomechanics and mechano-biology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  33. Sandino C, Planell JA, Lacroix D (2008) A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J Biomech 41:1005–1014

    Article  CAS  Google Scholar 

  34. Michalewicz Z (1996) Genetic algorithms + data structures = evolutionary programs. Springer Verlag, Berlin

    Google Scholar 

  35. Cappello F, Mancuso A (2003) A genetic algorithm for combined topology and shape optimisations. Comp Aided Design 35:761–769

    Article  Google Scholar 

Download references

Acknowledgments

The work was partially supported by Polish Ministry of Science and A*STAR under the Polish–Singapore Collaboration. The authors would like to thank Marcin Heljak for his help with the FE simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Swieszkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Swieszkowski, W., Kurzydlowski, K.J. (2012). Numerical Modeling in the Design and Evaluation of Scaffolds for Orthopaedics Applications. In: Liebschner, M. (eds) Computer-Aided Tissue Engineering. Methods in Molecular Biology, vol 868. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-764-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-764-4_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-763-7

  • Online ISBN: 978-1-61779-764-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics