Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 12/2019

22.05.2019

Proton transport and dielectric properties of high molecular weight polyvinylpyrrolidone (PVPK90) based solid polymer electrolytes for portable electrochemical devices

verfasst von: T. Regu, C. Ambika, K. Karuppasamy, Hashikaa Rajan, Dhanasekaran Vikraman, Ji-Hoon Jeon, Hyun-Seok Kim, T. Ajith Bosco Raj

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A simple solution cast route was used to prepare proton conducting solid polymer electrolytes using poly(methyl methacrylate) and poly(vinylpyrrolidone) as polymer hosts and methanesulfonic acid as a proton provider. Fourier transform infrared spectra confirmed functional group interactions between polymers, blended polymers, and acid. Polymer glass transition temperature shifted with increasing acid content in the blend electrolytes provide thermal stability up to 290 °C, verified by differential scanning calorimetry and thermogravimetry analyses. Proton conductivity achieved = 1.16 × 10−4 S/cm at room temperature with an ionic transport number of 0.98. Discharge profiles verified oxidation current < 10 μA for 2 V applied potential for the highly conductive electrolyte, confirming the prepared electrolytes as prime candidates for primary proton cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Fukaya, A. Tateno, N. Iimura, Y. Ohta, K. Takahashi, T. Sodekoda, K. Suzuki, H. Takahashi, S. Hasegawa, A. Hiroki, Application of graft-type poly (ether ether ketone)-based polymer electrolyte membranes to electrochemical devices–Fuel cells and electrolytic enrichment of tritium. Int. J. Hydrog. Energy 43, 8927–8935 (2018)CrossRef A. Fukaya, A. Tateno, N. Iimura, Y. Ohta, K. Takahashi, T. Sodekoda, K. Suzuki, H. Takahashi, S. Hasegawa, A. Hiroki, Application of graft-type poly (ether ether ketone)-based polymer electrolyte membranes to electrochemical devices–Fuel cells and electrolytic enrichment of tritium. Int. J. Hydrog. Energy 43, 8927–8935 (2018)CrossRef
2.
Zurück zum Zitat C.M. Branco, S. Sharma, M.M. de Camargo Forte, R. Steinberger-Wilckens, New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells. J. Power Sources 316, 139–159 (2016)CrossRef C.M. Branco, S. Sharma, M.M. de Camargo Forte, R. Steinberger-Wilckens, New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells. J. Power Sources 316, 139–159 (2016)CrossRef
3.
Zurück zum Zitat D.J. Kim, M.J. Jo, S.Y. Nam, A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J. Ind. Eng. Chem. 21, 36–52 (2015)CrossRef D.J. Kim, M.J. Jo, S.Y. Nam, A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J. Ind. Eng. Chem. 21, 36–52 (2015)CrossRef
4.
Zurück zum Zitat J. Kalaiselvimary, M.R. Prabhu, Influence of sulfonated GO/sulfonated biopolymer as polymer electrolyte membrane for fuel cell application. J. Mater. Sci. 29, 5525–5535 (2018) J. Kalaiselvimary, M.R. Prabhu, Influence of sulfonated GO/sulfonated biopolymer as polymer electrolyte membrane for fuel cell application. J. Mater. Sci. 29, 5525–5535 (2018)
5.
Zurück zum Zitat S. Monisha, S. Selvasekarapandian, T. Mathavan, A.M.F. Benial, S. Manoharan, S. Karthikeyan, Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. J. Mater. Sci. 27, 9314–9324 (2016) S. Monisha, S. Selvasekarapandian, T. Mathavan, A.M.F. Benial, S. Manoharan, S. Karthikeyan, Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. J. Mater. Sci. 27, 9314–9324 (2016)
6.
Zurück zum Zitat D. MacFarlane, J. Sun, M. Forsyth, J. Bell, L. Evans, I. Skyrabin, Polymer electrolytes for electrochromic window applications. Solid State Ionics 86, 959–964 (1996)CrossRef D. MacFarlane, J. Sun, M. Forsyth, J. Bell, L. Evans, I. Skyrabin, Polymer electrolytes for electrochromic window applications. Solid State Ionics 86, 959–964 (1996)CrossRef
7.
Zurück zum Zitat A. Al-Kahlout, D. Vieira, C.O. Avellaneda, E.R. Leite, M.A. Aegerter, A. Pawlicka, Gelatin-based protonic electrolyte for electrochromic windows. Ionics 16, 13–19 (2010)CrossRef A. Al-Kahlout, D. Vieira, C.O. Avellaneda, E.R. Leite, M.A. Aegerter, A. Pawlicka, Gelatin-based protonic electrolyte for electrochromic windows. Ionics 16, 13–19 (2010)CrossRef
8.
Zurück zum Zitat J. Zhou, J. Wang, H. Li, F. Shen, Hybrid gel polymer electrolyte with good stability and its application in electrochromic device. J. Mater. Sci. 29, 6068–6076 (2018) J. Zhou, J. Wang, H. Li, F. Shen, Hybrid gel polymer electrolyte with good stability and its application in electrochromic device. J. Mater. Sci. 29, 6068–6076 (2018)
9.
Zurück zum Zitat P.G. Bruce, Solid state electrochemistry (Cambridge University Press, Cambridge, 1997) P.G. Bruce, Solid state electrochemistry (Cambridge University Press, Cambridge, 1997)
11.
Zurück zum Zitat M.A.B.H. Susan, T. Kaneko, A. Noda, M. Watanabe, Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 127, 4976–4983 (2005)CrossRef M.A.B.H. Susan, T. Kaneko, A. Noda, M. Watanabe, Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 127, 4976–4983 (2005)CrossRef
12.
Zurück zum Zitat M. Shukur, M. Kadir, Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim. Acta 158, 152–165 (2015)CrossRef M. Shukur, M. Kadir, Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim. Acta 158, 152–165 (2015)CrossRef
13.
Zurück zum Zitat K.S. Ngai, S. Ramesh, K. Ramesh, J.C. Juan, A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22, 1259–1279 (2016)CrossRef K.S. Ngai, S. Ramesh, K. Ramesh, J.C. Juan, A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22, 1259–1279 (2016)CrossRef
14.
Zurück zum Zitat K. Mishra, S. Hashmi, D. Rai, Protic ionic liquid-based gel polymer electrolyte: structural and ion transport studies and its application in proton battery. J. Solid State Electrochem. 18, 2255–2266 (2014)CrossRef K. Mishra, S. Hashmi, D. Rai, Protic ionic liquid-based gel polymer electrolyte: structural and ion transport studies and its application in proton battery. J. Solid State Electrochem. 18, 2255–2266 (2014)CrossRef
15.
Zurück zum Zitat L. TianKhoon, N. Ataollahi, N.H. Hassan, A. Ahmad, Studies of porous solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl methacrylate) grafted natural rubber for applications in electrochemical devices. J. Solid State Electrochem. 20, 203–213 (2016)CrossRef L. TianKhoon, N. Ataollahi, N.H. Hassan, A. Ahmad, Studies of porous solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl methacrylate) grafted natural rubber for applications in electrochemical devices. J. Solid State Electrochem. 20, 203–213 (2016)CrossRef
16.
Zurück zum Zitat S. Karthikeyan, S. Sikkanthar, S. Selvasekarapandian, D. Arunkumar, H. Nithya, J. Kawamura, Structural, electrical and electrochemical properties of polyacrylonitrile-ammonium hexaflurophosphate polymer electrolyte system. J. Polym. Res. 23, 51 (2016)CrossRef S. Karthikeyan, S. Sikkanthar, S. Selvasekarapandian, D. Arunkumar, H. Nithya, J. Kawamura, Structural, electrical and electrochemical properties of polyacrylonitrile-ammonium hexaflurophosphate polymer electrolyte system. J. Polym. Res. 23, 51 (2016)CrossRef
17.
Zurück zum Zitat K.K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A. Sharma, V.N. Rao, Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J. Membr. Sci. 454, 200–211 (2014)CrossRef K.K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A. Sharma, V.N. Rao, Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J. Membr. Sci. 454, 200–211 (2014)CrossRef
18.
Zurück zum Zitat S.K. Patla, R. Ray, K. Asokan, S. Karmakar, Investigation of ionic conduction in PEO–PVDF based blend polymer electrolytes. J. Appl. Phys. 123, 125102 (2018)CrossRef S.K. Patla, R. Ray, K. Asokan, S. Karmakar, Investigation of ionic conduction in PEO–PVDF based blend polymer electrolytes. J. Appl. Phys. 123, 125102 (2018)CrossRef
19.
Zurück zum Zitat O. Garcia-Calvo, N. Lago, S. Devaraj, M. Armand, Cross-linked solid polymer electrolyte for all-solid-state rechargeable lithium batteries. Electrochim. Acta 220, 587–594 (2016)CrossRef O. Garcia-Calvo, N. Lago, S. Devaraj, M. Armand, Cross-linked solid polymer electrolyte for all-solid-state rechargeable lithium batteries. Electrochim. Acta 220, 587–594 (2016)CrossRef
20.
Zurück zum Zitat C.W. Liew, S. Ramesh, A. Arof, In recent years, the impact of the current ripple on Fuel Cell (FC) performances, particularly on its lifetime has gained a growing interest from the international scientific community. Polymer Electrolyte Membrane Fuel Cells (PEMFC) usually require a DC/DC boost converter to increase the output FC voltage. The output FC current is then submitted to the high switching frequency (ie > 10 kHz) leading. Int. J. Hydrog. Energy 40, 519–537 (2015)CrossRef C.W. Liew, S. Ramesh, A. Arof, In recent years, the impact of the current ripple on Fuel Cell (FC) performances, particularly on its lifetime has gained a growing interest from the international scientific community. Polymer Electrolyte Membrane Fuel Cells (PEMFC) usually require a DC/DC boost converter to increase the output FC voltage. The output FC current is then submitted to the high switching frequency (ie > 10 kHz) leading. Int. J. Hydrog. Energy 40, 519–537 (2015)CrossRef
21.
Zurück zum Zitat R. Muchakayala, S. Song, S. Gao, X. Wang, Y. Fan, Structure and ion transport in an ethylene carbonate-modified biodegradable gel polymer electrolyte. Polym. Testing 58, 116–125 (2017)CrossRef R. Muchakayala, S. Song, S. Gao, X. Wang, Y. Fan, Structure and ion transport in an ethylene carbonate-modified biodegradable gel polymer electrolyte. Polym. Testing 58, 116–125 (2017)CrossRef
22.
Zurück zum Zitat R. Alves, F. Sentanin, R. Sabadini, A. Pawlicka, M.M. Silva, Influence of cerium triflate and glycerol on electrochemical performance of chitosan electrolytes for electrochromic devices. Electrochim. Acta 217, 108–116 (2016)CrossRef R. Alves, F. Sentanin, R. Sabadini, A. Pawlicka, M.M. Silva, Influence of cerium triflate and glycerol on electrochemical performance of chitosan electrolytes for electrochromic devices. Electrochim. Acta 217, 108–116 (2016)CrossRef
23.
Zurück zum Zitat T. Tiong, M. Buraidah, L. Teo, A. Arof, Conductivity studies of poly (ethylene oxide)(PEO)/poly (vinyl alcohol)(PVA) blend gel polymer electrolytes for dye-sensitized solar cells. Ionics 22, 2133–2142 (2016)CrossRef T. Tiong, M. Buraidah, L. Teo, A. Arof, Conductivity studies of poly (ethylene oxide)(PEO)/poly (vinyl alcohol)(PVA) blend gel polymer electrolytes for dye-sensitized solar cells. Ionics 22, 2133–2142 (2016)CrossRef
24.
Zurück zum Zitat T. Farid, A. Islam, A. Masood, F. Iqbal, M.Y. Rafique, A. Razaq, Fabrication and characterization of MnO2 based composite sheets for development of flexible energy storage electrodes. Ceram. Int. 44, 11397–11401 (2018)CrossRef T. Farid, A. Islam, A. Masood, F. Iqbal, M.Y. Rafique, A. Razaq, Fabrication and characterization of MnO2 based composite sheets for development of flexible energy storage electrodes. Ceram. Int. 44, 11397–11401 (2018)CrossRef
25.
Zurück zum Zitat K. Anilkumar, B. Jinisha, M. Manoj, S. Jayalekshmi, Poly (ethylene oxide)(PEO)–Poly (vinyl pyrrolidone)(PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur. Polymer J. 89, 249–262 (2017)CrossRef K. Anilkumar, B. Jinisha, M. Manoj, S. Jayalekshmi, Poly (ethylene oxide)(PEO)–Poly (vinyl pyrrolidone)(PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur. Polymer J. 89, 249–262 (2017)CrossRef
26.
Zurück zum Zitat Y.K. Demir, A.Ü. Metin, B. Şatıroğlu, M.E. Solmaz, V. Kayser, K. Mäder, Poly (methyl vinyl ether-co-maleic acid)–Pectin based hydrogel-forming systems: gel, film, and microneedles. Eur. J. Pharm. Biopharm. 117, 182–194 (2017)CrossRef Y.K. Demir, A.Ü. Metin, B. Şatıroğlu, M.E. Solmaz, V. Kayser, K. Mäder, Poly (methyl vinyl ether-co-maleic acid)–Pectin based hydrogel-forming systems: gel, film, and microneedles. Eur. J. Pharm. Biopharm. 117, 182–194 (2017)CrossRef
27.
Zurück zum Zitat M. Premalatha, N. Vijaya, S. Selvasekarapandian, S. Selvalakshmi, Characterization of blend polymer PVA-PVP complexed with ammonium thiocyanate. Ionics 22, 1299–1310 (2016)CrossRef M. Premalatha, N. Vijaya, S. Selvasekarapandian, S. Selvalakshmi, Characterization of blend polymer PVA-PVP complexed with ammonium thiocyanate. Ionics 22, 1299–1310 (2016)CrossRef
28.
Zurück zum Zitat A. Abdelghany, M. Morsi, A. Abdelrazek, Structural, optical, morphological and electrical properties of CoCl 2-filled poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) Terpolymer. Silicon 10, 1697–1704 (2018)CrossRef A. Abdelghany, M. Morsi, A. Abdelrazek, Structural, optical, morphological and electrical properties of CoCl 2-filled poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) Terpolymer. Silicon 10, 1697–1704 (2018)CrossRef
29.
Zurück zum Zitat M. Muthuvinayagam, C. Gopinathan, Characterization of proton conducting polymer blend electrolytes based on PVdF-PVA. Polymer 68, 122–130 (2015)CrossRef M. Muthuvinayagam, C. Gopinathan, Characterization of proton conducting polymer blend electrolytes based on PVdF-PVA. Polymer 68, 122–130 (2015)CrossRef
30.
Zurück zum Zitat V. Parameswaran, N. Nallamuthu, P. Devendran, E. Nagarajan, A. Manikandan, Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application. Physica B 515, 89–98 (2017)CrossRef V. Parameswaran, N. Nallamuthu, P. Devendran, E. Nagarajan, A. Manikandan, Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application. Physica B 515, 89–98 (2017)CrossRef
31.
Zurück zum Zitat A. Samsudin, M. Saadiah, Ionic conduction study of enhanced amorphous solid bio-polymer electrolytes based carboxymethyl cellulose doped NH 4 Br. J. Non-Crystalline Solids 497, 19–29 (2018)CrossRef A. Samsudin, M. Saadiah, Ionic conduction study of enhanced amorphous solid bio-polymer electrolytes based carboxymethyl cellulose doped NH 4 Br. J. Non-Crystalline Solids 497, 19–29 (2018)CrossRef
33.
Zurück zum Zitat S. Sivadevi, S. Selvasekarapandian, S. Karthikeyan, C. Sanjeeviraja, H. Nithya, Y. Iwai, J. Kawamura, Proton-conducting polymer electrolyte based on PVA-PAN blend doped with ammonium thiocyanate. Ionics 21, 1017–1029 (2015)CrossRef S. Sivadevi, S. Selvasekarapandian, S. Karthikeyan, C. Sanjeeviraja, H. Nithya, Y. Iwai, J. Kawamura, Proton-conducting polymer electrolyte based on PVA-PAN blend doped with ammonium thiocyanate. Ionics 21, 1017–1029 (2015)CrossRef
34.
Zurück zum Zitat M. Shukur, R. Ithnin, M. Kadir, Electrical properties of proton conducting solid biopolymer electrolytes based on starch–chitosan blend. Ionics 20, 977–999 (2014)CrossRef M. Shukur, R. Ithnin, M. Kadir, Electrical properties of proton conducting solid biopolymer electrolytes based on starch–chitosan blend. Ionics 20, 977–999 (2014)CrossRef
35.
Zurück zum Zitat M. Kadir, M. Hamsan, Green electrolytes based on dextran-chitosan blend and the effect of NH 4 SCN as proton provider on the electrical response studies. Ionics 24, 2379–2398 (2018)CrossRef M. Kadir, M. Hamsan, Green electrolytes based on dextran-chitosan blend and the effect of NH 4 SCN as proton provider on the electrical response studies. Ionics 24, 2379–2398 (2018)CrossRef
36.
Zurück zum Zitat I. Ayesta, J. Zubia, J. Arrue, M.A. Illarramendi, M. Azkune, Characterization of chromatic dispersion and refractive index of polymer optical fibers. Polymers 9, 730 (2017)CrossRef I. Ayesta, J. Zubia, J. Arrue, M.A. Illarramendi, M. Azkune, Characterization of chromatic dispersion and refractive index of polymer optical fibers. Polymers 9, 730 (2017)CrossRef
37.
Zurück zum Zitat M. Vahini, M. Muthuvinayagam, Synthesis and electrochemical studies on sodium ion conducting PVP based solid polymer electrolytes. J. Mater. Sci. 30(6), 5609–5619 (2019) M. Vahini, M. Muthuvinayagam, Synthesis and electrochemical studies on sodium ion conducting PVP based solid polymer electrolytes. J. Mater. Sci. 30(6), 5609–5619 (2019)
38.
Zurück zum Zitat C. Ambika, K. Karuppasamy, D. Vikraman, J.Y. Lee, T. Regu, T.A.B. Raj, K. Prasanna, H.-S. Kim, Effect of dimethyl carbonate (DMC) on the electrochemical and cycling properties of solid polymer electrolytes (PVP-MSA) and its application for proton batteries. Solid State Ionics 321, 106–114 (2018)CrossRef C. Ambika, K. Karuppasamy, D. Vikraman, J.Y. Lee, T. Regu, T.A.B. Raj, K. Prasanna, H.-S. Kim, Effect of dimethyl carbonate (DMC) on the electrochemical and cycling properties of solid polymer electrolytes (PVP-MSA) and its application for proton batteries. Solid State Ionics 321, 106–114 (2018)CrossRef
39.
Zurück zum Zitat C. Ambika, G. Hirankumar, Characterization of CH 3 SO 3 H-doped PMMA/PVP blend-based proton-conducting polymer electrolytes and its application in primary battery. Appl. Phys. A 122, 113 (2016)CrossRef C. Ambika, G. Hirankumar, Characterization of CH 3 SO 3 H-doped PMMA/PVP blend-based proton-conducting polymer electrolytes and its application in primary battery. Appl. Phys. A 122, 113 (2016)CrossRef
40.
Zurück zum Zitat V.S. Protsenko, E.A. Vasil’eva, F.I. Danilov, Electrodeposition of lead coatings from a methanesulphonate electrolyte. J. Chem. Technol. Metall. 50, 39–43 (2015) V.S. Protsenko, E.A. Vasil’eva, F.I. Danilov, Electrodeposition of lead coatings from a methanesulphonate electrolyte. J. Chem. Technol. Metall. 50, 39–43 (2015)
41.
Zurück zum Zitat C.W. Liew, S. Ramesh, A. Arof, A novel approach on ionic liquid-based poly (vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int. J. Hydrog. Energy 39(6), 2917–2928 (2014)CrossRef C.W. Liew, S. Ramesh, A. Arof, A novel approach on ionic liquid-based poly (vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int. J. Hydrog. Energy 39(6), 2917–2928 (2014)CrossRef
42.
Zurück zum Zitat Y.-C. Yen, Y.-S. Ye, C.-C. Cheng, H.-M. Chen, H.-S. Sheu, F.-C. Chang, Effect of LiClO4 on the thermal and morphological properties of organic/inorganic polymer hybrids. Polymer 49, 3625–3628 (2008)CrossRef Y.-C. Yen, Y.-S. Ye, C.-C. Cheng, H.-M. Chen, H.-S. Sheu, F.-C. Chang, Effect of LiClO4 on the thermal and morphological properties of organic/inorganic polymer hybrids. Polymer 49, 3625–3628 (2008)CrossRef
43.
Zurück zum Zitat N. Rajeswari, S. Selvasekarapandian, C. Sanjeeviraja, J. Kawamura, S.A. Bahadur, A study on polymer blend electrolyte based on PVA/PVP with proton salt. Polym. Bull. 71, 1061–1080 (2014)CrossRef N. Rajeswari, S. Selvasekarapandian, C. Sanjeeviraja, J. Kawamura, S.A. Bahadur, A study on polymer blend electrolyte based on PVA/PVP with proton salt. Polym. Bull. 71, 1061–1080 (2014)CrossRef
44.
Zurück zum Zitat B. Jinisha, K. Anilkumar, M. Manoj, V. Pradeep, S. Jayalekshmi, Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim. Acta 235, 210–222 (2017)CrossRef B. Jinisha, K. Anilkumar, M. Manoj, V. Pradeep, S. Jayalekshmi, Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim. Acta 235, 210–222 (2017)CrossRef
45.
Zurück zum Zitat S. Tripathi, G. Mehrotra, P. Dutta, Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. Int. J. Biol. Macromol. 45, 372–376 (2009)CrossRef S. Tripathi, G. Mehrotra, P. Dutta, Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. Int. J. Biol. Macromol. 45, 372–376 (2009)CrossRef
46.
Zurück zum Zitat Z. Jin, K. Pramoda, G. Xu, S.H. Goh, Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacrylate) composites. Chem. Phys. Lett. 337, 43–47 (2001)CrossRef Z. Jin, K. Pramoda, G. Xu, S.H. Goh, Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacrylate) composites. Chem. Phys. Lett. 337, 43–47 (2001)CrossRef
47.
Zurück zum Zitat C.V.S. Reddy, X. Han, Q.-Y. Zhu, L.-Q. Mai, W. Chen, Dielectric spectroscopy studies on (PVP + PVA) polyblend film. Microelectron. Eng. 83, 281–285 (2006)CrossRef C.V.S. Reddy, X. Han, Q.-Y. Zhu, L.-Q. Mai, W. Chen, Dielectric spectroscopy studies on (PVP + PVA) polyblend film. Microelectron. Eng. 83, 281–285 (2006)CrossRef
48.
Zurück zum Zitat C. Ramya, S. Selvasekarapandian, G. Hirankumar, T. Savitha, P. Angelo, Investigation on dielectric relaxations of PVP–NH4SCN polymer electrolyte. J. Non-Cryst. Solids 354, 1494–1502 (2008)CrossRef C. Ramya, S. Selvasekarapandian, G. Hirankumar, T. Savitha, P. Angelo, Investigation on dielectric relaxations of PVP–NH4SCN polymer electrolyte. J. Non-Cryst. Solids 354, 1494–1502 (2008)CrossRef
49.
Zurück zum Zitat S. Rajendran, M. Sivakumar, R. Subadevi, Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater. Lett. 58, 641–649 (2004)CrossRef S. Rajendran, M. Sivakumar, R. Subadevi, Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater. Lett. 58, 641–649 (2004)CrossRef
50.
Zurück zum Zitat G.A. Luduena, T.D. Kühne, D. Sebastiani, Mixed Grotthuss and vehicle transport mechanism in proton conducting polymers from ab initio molecular dynamics simulations. Chem. Mater. 23, 1424–1429 (2011)CrossRef G.A. Luduena, T.D. Kühne, D. Sebastiani, Mixed Grotthuss and vehicle transport mechanism in proton conducting polymers from ab initio molecular dynamics simulations. Chem. Mater. 23, 1424–1429 (2011)CrossRef
51.
Zurück zum Zitat A. Saroj, R. Singh, S. Chandra, Studies on polymer electrolyte poly (vinyl) pyrrolidone (PVP) complexed with ionic liquid: effect of complexation on thermal stability, conductivity and relaxation behaviour. Mater. Sci. Eng., B 178, 231–238 (2013)CrossRef A. Saroj, R. Singh, S. Chandra, Studies on polymer electrolyte poly (vinyl) pyrrolidone (PVP) complexed with ionic liquid: effect of complexation on thermal stability, conductivity and relaxation behaviour. Mater. Sci. Eng., B 178, 231–238 (2013)CrossRef
52.
Zurück zum Zitat M. Dionísio, A.C. Fernandes, J.F. Mano, N.T. Correia, R.C. Sousa, Relaxation studies in PEO/PMMA blends. Macromolecules 33, 1002–1011 (2000)CrossRef M. Dionísio, A.C. Fernandes, J.F. Mano, N.T. Correia, R.C. Sousa, Relaxation studies in PEO/PMMA blends. Macromolecules 33, 1002–1011 (2000)CrossRef
53.
Zurück zum Zitat H. Nithya, S. Selvasekarapandian, P.C. Selvin, D.A. Kumar, J. Kawamura, Effect of propylene carbonate and dimethylformamide on ionic conductivity of P (ECH-EO) based polymer electrolyte. Electrochim. Acta 66, 110–120 (2012)CrossRef H. Nithya, S. Selvasekarapandian, P.C. Selvin, D.A. Kumar, J. Kawamura, Effect of propylene carbonate and dimethylformamide on ionic conductivity of P (ECH-EO) based polymer electrolyte. Electrochim. Acta 66, 110–120 (2012)CrossRef
54.
Zurück zum Zitat A. Samsudin, H. Lai, M. Isa, Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochim. Acta 129, 1–13 (2014)CrossRef A. Samsudin, H. Lai, M. Isa, Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochim. Acta 129, 1–13 (2014)CrossRef
Metadaten
Titel
Proton transport and dielectric properties of high molecular weight polyvinylpyrrolidone (PVPK90) based solid polymer electrolytes for portable electrochemical devices
verfasst von
T. Regu
C. Ambika
K. Karuppasamy
Hashikaa Rajan
Dhanasekaran Vikraman
Ji-Hoon Jeon
Hyun-Seok Kim
T. Ajith Bosco Raj
Publikationsdatum
22.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 12/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01535-2

Weitere Artikel der Ausgabe 12/2019

Journal of Materials Science: Materials in Electronics 12/2019 Zur Ausgabe

Neuer Inhalt