Skip to main content
Erschienen in: Journal of Materials Science 34/2020

08.09.2020 | Electronic materials

Protonation control of spin transport properties in magnetic single-molecule junctions

verfasst von: Shuai Qiu, Yuan-Yuan Miao, Guang-Ping Zhang, Jun-Feng Ren, Chuan-Kui Wang, Gui-Chao Hu

Erschienen in: Journal of Materials Science | Ausgabe 34/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The protonation-controlled conductance switching of 4,4′-vinylenedipyridine (44VDP) molecular junctions was experimentally reported by Brooke et al. (Nano Lett 18(2): 1317–1322, 2018), where a change induced by protonation in the bonding at the molecule–metal interface was proposed as the key ingredient. Here, we perform a first-principles study on the spin-dependent transport properties of 44VDP molecular junctions modulated by protonation. The switching mechanism in the experiment is clarified; namely, the weak coupling strength at the molecule–metal interface is triggered by protonation of pyridyl groups in the 44VDP molecule. In particular, the protonation process modifies the organic–ferromagnetic spinterface, which reduces the number of hybrid interface states and causes an inversion of tunneling magnetoresistance from positive to negative values. Furthermore, a protonation-induced excellent spin-filtering effect is realized. This work sheds light on the mechanism of protonation at the organic–ferromagnetic interface and provides a promising way to realize multifunctional devices in organic spintronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kroemer H (2001) Nobel lecture: quasielectric fields and band offsets: teaching electrons new tricks. Rev Mod Phys 73(3):783–793 Kroemer H (2001) Nobel lecture: quasielectric fields and band offsets: teaching electrons new tricks. Rev Mod Phys 73(3):783–793
2.
Zurück zum Zitat Cinchetti M, Dediu VA, Hueso LE (2017) Activating the molecular spinterface. Nat Mater 16(5):507–515 Cinchetti M, Dediu VA, Hueso LE (2017) Activating the molecular spinterface. Nat Mater 16(5):507–515
3.
Zurück zum Zitat Galbiati M, Tatay S, Barraud C, Dediu AV, Petroff F, Mattana R, Seneor P (2014) Spinterface: crafting spintronics at the molecular scale. MRS Bull 39(7):602–607 Galbiati M, Tatay S, Barraud C, Dediu AV, Petroff F, Mattana R, Seneor P (2014) Spinterface: crafting spintronics at the molecular scale. MRS Bull 39(7):602–607
4.
Zurück zum Zitat Sun M, Mi W (2018) Progress in organic molecular/ferromagnet spinterfaces: towards molecular spintronics. J Mater Chem C 6(25):6619–6636 Sun M, Mi W (2018) Progress in organic molecular/ferromagnet spinterfaces: towards molecular spintronics. J Mater Chem C 6(25):6619–6636
5.
Zurück zum Zitat Gu XR, Guo LD, Sun XN (2018) Recent spinterfacial studies targeted to spin manipulation in molecular spintronic devices. Chin Phys B 27(10):107202 Gu XR, Guo LD, Sun XN (2018) Recent spinterfacial studies targeted to spin manipulation in molecular spintronic devices. Chin Phys B 27(10):107202
6.
Zurück zum Zitat Sanvito S (2010) The rise of spinterface science. Nat Phys 6(8):562–564 Sanvito S (2010) The rise of spinterface science. Nat Phys 6(8):562–564
7.
Zurück zum Zitat Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F, Fert A (2010) Unravelling the role of the interface for spin injection into organic semiconductors. Nat Phys 6(8):615–620 Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F, Fert A (2010) Unravelling the role of the interface for spin injection into organic semiconductors. Nat Phys 6(8):615–620
8.
Zurück zum Zitat Raman KV, Kamerbeek AM, Mukherjee A, Atodiresei N, Sen TK, Lazić P, Caciuc V, Michel R, Stalke D, Mandal SK, Blügel S, Münzenberg M, Moodera JS (2013) Interface-engineered templates for molecular spin memory devices. Nature 493(7433):509–513 Raman KV, Kamerbeek AM, Mukherjee A, Atodiresei N, Sen TK, Lazić P, Caciuc V, Michel R, Stalke D, Mandal SK, Blügel S, Münzenberg M, Moodera JS (2013) Interface-engineered templates for molecular spin memory devices. Nature 493(7433):509–513
10.
Zurück zum Zitat Steil S, Großmann N, Laux M, Ruffing A, Steil D, Wiesenmayer M, Mathias S, Monti OLA, Cinchetti M, Aeschlimann M (2013) Spin-dependent trapping of electrons at spinterfaces. Nat Phys 9(4):242–247 Steil S, Großmann N, Laux M, Ruffing A, Steil D, Wiesenmayer M, Mathias S, Monti OLA, Cinchetti M, Aeschlimann M (2013) Spin-dependent trapping of electrons at spinterfaces. Nat Phys 9(4):242–247
11.
Zurück zum Zitat Methfessel T, Steil S, Baadji N, Großmann N, Koffler K, Sanvito S, Aeschlimann M, Cinchetti M, Elmers H (2011) Spin scattering and spin-polarized hybrid interface states at a metal-organic interface. Phys Rev B 84(22):224403 Methfessel T, Steil S, Baadji N, Großmann N, Koffler K, Sanvito S, Aeschlimann M, Cinchetti M, Elmers H (2011) Spin scattering and spin-polarized hybrid interface states at a metal-organic interface. Phys Rev B 84(22):224403
12.
Zurück zum Zitat Lach S, Altenhof A, Tarafder K, Schmitt F, Ali ME, Vogel M, Sauther J, Oppeneer PM, Ziegler C (2012) Metal-organic hybrid interface states of a ferromagnet/organic semiconductor hybrid junction as basis for engineering spin injection in organic spintronics. Adv Funct Mater 22(5):989–997 Lach S, Altenhof A, Tarafder K, Schmitt F, Ali ME, Vogel M, Sauther J, Oppeneer PM, Ziegler C (2012) Metal-organic hybrid interface states of a ferromagnet/organic semiconductor hybrid junction as basis for engineering spin injection in organic spintronics. Adv Funct Mater 22(5):989–997
13.
Zurück zum Zitat Shi S, Sun Z, Bedoya-Pinto A, Graziosi P, Li X, Liu X, Hueso L, Dediu VA, Luo Y, Fahlman M (2014) Hybrid interface states and spin polarization at ferromagnetic metal-organic heterojunctions: interface engineering for efficient spin injection in organic spintronics. Adv Funct Mater 24(30):4812–4821 Shi S, Sun Z, Bedoya-Pinto A, Graziosi P, Li X, Liu X, Hueso L, Dediu VA, Luo Y, Fahlman M (2014) Hybrid interface states and spin polarization at ferromagnetic metal-organic heterojunctions: interface engineering for efficient spin injection in organic spintronics. Adv Funct Mater 24(30):4812–4821
14.
Zurück zum Zitat Gruber M, Ibrahim F, Boukari S, Joly L, Costa VD, Studniarek M, Peter M, Isshiki H, Jabbar H, Davesne V (2015) Spin-dependent hybridization between molecule and metal at room temperature through interlayer exchange coupling. Nano Lett 15(12):7921–7926 Gruber M, Ibrahim F, Boukari S, Joly L, Costa VD, Studniarek M, Peter M, Isshiki H, Jabbar H, Davesne V (2015) Spin-dependent hybridization between molecule and metal at room temperature through interlayer exchange coupling. Nano Lett 15(12):7921–7926
15.
Zurück zum Zitat Yu C, Miao Y, Qiu S, Cui Y, He G, Zhang G, Wang C, Hu G (2018) Modulating spin-dependent electron transport in benzene-dithiolate magnetic junctions by hybrid interface states. J Phys D Appl Phys 51(34):345302 Yu C, Miao Y, Qiu S, Cui Y, He G, Zhang G, Wang C, Hu G (2018) Modulating spin-dependent electron transport in benzene-dithiolate magnetic junctions by hybrid interface states. J Phys D Appl Phys 51(34):345302
17.
Zurück zum Zitat Dalgleish H, Kirczenow G (2006) Interface states, negative differential resistance, and rectification in molecular junctions with transition-metal contacts. Phys Rev B 73(4):245431 Dalgleish H, Kirczenow G (2006) Interface states, negative differential resistance, and rectification in molecular junctions with transition-metal contacts. Phys Rev B 73(4):245431
18.
Zurück zum Zitat Schmaus S, Bagrets A, Nahas Y, Yamada TK, Bork A, Bowen M, Beaurepaire E, Evers F, Wulfhekel W (2011) Giant magnetoresistance through a single molecule. Nat Nanotechnol 6(3):185–189 Schmaus S, Bagrets A, Nahas Y, Yamada TK, Bork A, Bowen M, Beaurepaire E, Evers F, Wulfhekel W (2011) Giant magnetoresistance through a single molecule. Nat Nanotechnol 6(3):185–189
19.
Zurück zum Zitat Kawahara SL, Lagoute J, Repain V, Chacon C, Girard Y, Rousset S, Smogunov A, Barreteau C (2012) Large magnetoresistance through a single molecule due to a spin-split hybridized orbital. Nano Lett 12(9):4558–4563 Kawahara SL, Lagoute J, Repain V, Chacon C, Girard Y, Rousset S, Smogunov A, Barreteau C (2012) Large magnetoresistance through a single molecule due to a spin-split hybridized orbital. Nano Lett 12(9):4558–4563
20.
Zurück zum Zitat Yoshida K, Hamada I, Sakata S, Umeno A, Tsukada M, Hirakawa K (2013) Gate-tunable large negative tunnel magnetoresistance in Ni–C60–Ni single molecule transistors. Nano Lett 13(2):481–485 Yoshida K, Hamada I, Sakata S, Umeno A, Tsukada M, Hirakawa K (2013) Gate-tunable large negative tunnel magnetoresistance in Ni–C60–Ni single molecule transistors. Nano Lett 13(2):481–485
21.
Zurück zum Zitat Brooke RJ, Jin C, Szumski DS, Nichols RJ, Mao BW, Thygesen KS, Schwarzacher W (2015) Single-molecule electrochemical transistor utilizing a nickel-pyridyl spinterface. Nano Lett 15(1):275–280 Brooke RJ, Jin C, Szumski DS, Nichols RJ, Mao BW, Thygesen KS, Schwarzacher W (2015) Single-molecule electrochemical transistor utilizing a nickel-pyridyl spinterface. Nano Lett 15(1):275–280
22.
Zurück zum Zitat Rakhmilevitch D, Sarkar S, Bitton O, Kronik L, Tal O (2016) Enhanced magnetoresistance in molecular junctions by geometrical optimization of spin-selective orbital hybridization. Nano Lett 16(3):1741–1745 Rakhmilevitch D, Sarkar S, Bitton O, Kronik L, Tal O (2016) Enhanced magnetoresistance in molecular junctions by geometrical optimization of spin-selective orbital hybridization. Nano Lett 16(3):1741–1745
23.
Zurück zum Zitat Delprat S, Galbiati M, Tatay S, Quinard B, Barraud C, Petroff F, Seneor P, Mattana R (2018) Molecular spintronics: the role of spin-dependent hybridization. J Phys D Appl Phys 51(47):473001 Delprat S, Galbiati M, Tatay S, Quinard B, Barraud C, Petroff F, Seneor P, Mattana R (2018) Molecular spintronics: the role of spin-dependent hybridization. J Phys D Appl Phys 51(47):473001
24.
Zurück zum Zitat Smogunov A, Dappe YJ (2015) Symmetry-derived half-metallicity in atomic and molecular junctions. Nano Lett 15(5):3552–3556 Smogunov A, Dappe YJ (2015) Symmetry-derived half-metallicity in atomic and molecular junctions. Nano Lett 15(5):3552–3556
25.
Zurück zum Zitat Li Y, Zhang GP, Xie Z, Zhang Z, Ren JF, Wang CK, Hu GC (2016) Spin polarization at organic-ferromagnetic interface: effect of contact configuration. Chin J Chem Phys 29(3):344–348 Li Y, Zhang GP, Xie Z, Zhang Z, Ren JF, Wang CK, Hu GC (2016) Spin polarization at organic-ferromagnetic interface: effect of contact configuration. Chin J Chem Phys 29(3):344–348
26.
Zurück zum Zitat Ulman K, Narasimhan S, Delin A (2014) Tuning spin transport properties and molecular magnetoresistance through contact geometry. J Chem Phys 140(4):044716 Ulman K, Narasimhan S, Delin A (2014) Tuning spin transport properties and molecular magnetoresistance through contact geometry. J Chem Phys 140(4):044716
27.
Zurück zum Zitat Li D, Barreteau C, Kawahara SL, Lagoute J, Chacon C, Girard Y, Rousset S, Repain V, Smogunov A (2016) Symmetry-selected spin-split hybrid states in C60/ferromagnetic interfaces. Phys Rev B 93(8):085425 Li D, Barreteau C, Kawahara SL, Lagoute J, Chacon C, Girard Y, Rousset S, Repain V, Smogunov A (2016) Symmetry-selected spin-split hybrid states in C60/ferromagnetic interfaces. Phys Rev B 93(8):085425
28.
Zurück zum Zitat Mandal S, Pati R (2012) What determines the sign reversal of magnetoresistance in a molecular tunnel junction? ACS Nano 6(4):3580–3588 Mandal S, Pati R (2012) What determines the sign reversal of magnetoresistance in a molecular tunnel junction? ACS Nano 6(4):3580–3588
29.
Zurück zum Zitat Li D, Banerjee R, Mondal S, Maliyov I, Romanova M, Dappe YJ, Smogunov A (2019) Symmetry aspects of spin filtering in molecular junctions: Hybridization and quantum interference effects. Phys Rev B 99(11):115403 Li D, Banerjee R, Mondal S, Maliyov I, Romanova M, Dappe YJ, Smogunov A (2019) Symmetry aspects of spin filtering in molecular junctions: Hybridization and quantum interference effects. Phys Rev B 99(11):115403
30.
Zurück zum Zitat Qiu S, Miao YY, Zhang GP, Ren JF, Wang CK, Hu GC (2020) Manipulating current spin polarization in magnetic single-molecule junctions via destructive quantum interference. J Phys Chem C 124(22):12144–12152 Qiu S, Miao YY, Zhang GP, Ren JF, Wang CK, Hu GC (2020) Manipulating current spin polarization in magnetic single-molecule junctions via destructive quantum interference. J Phys Chem C 124(22):12144–12152
31.
Zurück zum Zitat Qiu S, Miao YY, Zhang GP, Ren JF, Wang CK, Hu GC (2019) Enhancement of magnetoresistance and current spin polarization in single-molecule junctions by manipulating the hybrid interface states via anchoring groups. J Magn Magn Mater 479:247–253 Qiu S, Miao YY, Zhang GP, Ren JF, Wang CK, Hu GC (2019) Enhancement of magnetoresistance and current spin polarization in single-molecule junctions by manipulating the hybrid interface states via anchoring groups. J Magn Magn Mater 479:247–253
32.
Zurück zum Zitat Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Molecular-scale electronics: from concept to function. Chem Rev 116(7):4318–4440 Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Molecular-scale electronics: from concept to function. Chem Rev 116(7):4318–4440
33.
Zurück zum Zitat Xin N, Guan J, Zhou C, Chen X, Gu C, Li Y, Ratner MA, Nitzan A, Stoddart JF, Guo X (2019) Concepts in the design and engineering of single-molecule electronic devices. Nat Rev Phys 1(3):211–230 Xin N, Guan J, Zhou C, Chen X, Gu C, Li Y, Ratner MA, Nitzan A, Stoddart JF, Guo X (2019) Concepts in the design and engineering of single-molecule electronic devices. Nat Rev Phys 1(3):211–230
34.
Zurück zum Zitat Li L, Lo WY, Cai Z, Zhang N, Yu L (2016) Proton-triggered switch based on a molecular transistor with edge-on gate. Chem Sci 7(5):3137–3141 Li L, Lo WY, Cai Z, Zhang N, Yu L (2016) Proton-triggered switch based on a molecular transistor with edge-on gate. Chem Sci 7(5):3137–3141
35.
Zurück zum Zitat Yang G, Sangtarash S, Liu Z, Li X, Sadeghi H, Tan Z, Li R, Zheng J, Dong X, Liu J (2017) Protonation tuning of quantum interference in azulene-type single-molecule junctions. Chem Sci 8(11):7505–7509 Yang G, Sangtarash S, Liu Z, Li X, Sadeghi H, Tan Z, Li R, Zheng J, Dong X, Liu J (2017) Protonation tuning of quantum interference in azulene-type single-molecule junctions. Chem Sci 8(11):7505–7509
36.
Zurück zum Zitat Zhang YP, Chen LC, Zhang ZQ, Cao JJ, Tang C, Liu J, Duan LL, Huo Y, Shao X, Hong W, Zhang HL (2018) Distinguishing diketopyrrolopyrrole isomers in single-molecule junctions via reversible stimuli-responsive quantum interference. J Am Chem Soc 140(21):6531–6535 Zhang YP, Chen LC, Zhang ZQ, Cao JJ, Tang C, Liu J, Duan LL, Huo Y, Shao X, Hong W, Zhang HL (2018) Distinguishing diketopyrrolopyrrole isomers in single-molecule junctions via reversible stimuli-responsive quantum interference. J Am Chem Soc 140(21):6531–6535
37.
Zurück zum Zitat Zhang N, Lo WY, Jose A, Cai Z, Li L, Yu L (2017) A single-molecular and gate operated with two orthogonal switching mechanisms. Adv Mater 29(28):1701248 Zhang N, Lo WY, Jose A, Cai Z, Li L, Yu L (2017) A single-molecular and gate operated with two orthogonal switching mechanisms. Adv Mater 29(28):1701248
38.
Zurück zum Zitat Zhao W, Zou D, Sun Z, Xu Y, Ji G, Yu Y, Yang C (2019) Spin logic gates operated by protonation and magnetism in molecular combinational circuits. Adv Theor Simul 2(6):1900057 Zhao W, Zou D, Sun Z, Xu Y, Ji G, Yu Y, Yang C (2019) Spin logic gates operated by protonation and magnetism in molecular combinational circuits. Adv Theor Simul 2(6):1900057
39.
Zurück zum Zitat Morales GM, Jiang P, Yuan S, Lee Y, Sanchez A, You W, Yu L (2005) Inversion of the rectifying effect in diblock molecular diodes by protonation. J Am Chem Soc 127(30):10456–10457 Morales GM, Jiang P, Yuan S, Lee Y, Sanchez A, You W, Yu L (2005) Inversion of the rectifying effect in diblock molecular diodes by protonation. J Am Chem Soc 127(30):10456–10457
40.
Zurück zum Zitat Zhang GP, Hu GC, Li ZL, Wang CK (2012) Theoretical studies on protonation-induced inversion of the rectifying direction in dipyrimidinyl-diphenyl diblock molecular junctions. J Phys Chem C 116(5):3773–3778 Zhang GP, Hu GC, Li ZL, Wang CK (2012) Theoretical studies on protonation-induced inversion of the rectifying direction in dipyrimidinyl-diphenyl diblock molecular junctions. J Phys Chem C 116(5):3773–3778
41.
Zurück zum Zitat Brooke RJ, Szumski DS, Vezzoli A, Higgins SJ, Nichols RJ, Schwarzacher W (2018) Dual control of molecular conductance through ph and potential in single-molecule devices. Nano Lett 18(2):1317–1322 Brooke RJ, Szumski DS, Vezzoli A, Higgins SJ, Nichols RJ, Schwarzacher W (2018) Dual control of molecular conductance through ph and potential in single-molecule devices. Nano Lett 18(2):1317–1322
42.
Zurück zum Zitat Qiu S, Miao YY, Zhang GP, Ren JF, Wang CK, Hu GC (2019) Modulating hybrid interface states in magnetic molecular junctions by molecular geometrical torsion. J Magn Magn Mater 489:165465 Qiu S, Miao YY, Zhang GP, Ren JF, Wang CK, Hu GC (2019) Modulating hybrid interface states in magnetic molecular junctions by molecular geometrical torsion. J Magn Magn Mater 489:165465
44.
Zurück zum Zitat José MS, Emilio A, Julian DG, Alberto G, Javier J, Pablo O, Daniel SP (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14(11):2745 José MS, Emilio A, Julian DG, Alberto G, Javier J, Pablo O, Daniel SP (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14(11):2745
46.
Zurück zum Zitat Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65(16):165401 Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65(16):165401
47.
Zurück zum Zitat Wong BM, Cordaro JG (2011) Electronic properties of vinylene-linked heterocyclic conducting polymers: predictive design and rational guidance from DFT calculations. J Phys Chem C 115(37):18333–18341 Wong BM, Cordaro JG (2011) Electronic properties of vinylene-linked heterocyclic conducting polymers: predictive design and rational guidance from DFT calculations. J Phys Chem C 115(37):18333–18341
48.
Zurück zum Zitat Liu S, Zheng F, Rappe AM (2017) Giant bulk photovoltaic effect in vinylene-linked hybrid heterocyclic polymer. J Phys Chem C 121(12):6500–6507 Liu S, Zheng F, Rappe AM (2017) Giant bulk photovoltaic effect in vinylene-linked hybrid heterocyclic polymer. J Phys Chem C 121(12):6500–6507
49.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(39):3865 Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(39):3865
50.
Zurück zum Zitat Troullier N, Martins J (1990) A straightforward method for generating soft transferable pseudopotentials. Solid State Commun 74(7):613–616 Troullier N, Martins J (1990) A straightforward method for generating soft transferable pseudopotentials. Solid State Commun 74(7):613–616
51.
Zurück zum Zitat Landauer R (1970) Electrical resistance of disordered one-dimensional lattices. Philos Mag 21(172):863–867 Landauer R (1970) Electrical resistance of disordered one-dimensional lattices. Philos Mag 21(172):863–867
52.
Zurück zum Zitat Larade B, Taylor J, Zheng QR, Mehrez H, Pomorski P, Guo H (2001) Renormalized molecular levels in a Sc3N@C80 molecular electronic device. Phys Rev B 64(19):195402 Larade B, Taylor J, Zheng QR, Mehrez H, Pomorski P, Guo H (2001) Renormalized molecular levels in a Sc3N@C80 molecular electronic device. Phys Rev B 64(19):195402
53.
Zurück zum Zitat Liu X, Tan Y, Zhang G, Pei Y (2018) Electronic structure and spin transport properties of a new class of semiconductor surface-confined one-dimensional half-metallic [Eu-(CnHn−2)]N (n = 7–9) sandwich compounds and molecular wires: first principle studies. J Phys Chem C 122(28):16168–16177 Liu X, Tan Y, Zhang G, Pei Y (2018) Electronic structure and spin transport properties of a new class of semiconductor surface-confined one-dimensional half-metallic [Eu-(CnHn−2)]N (n = 7–9) sandwich compounds and molecular wires: first principle studies. J Phys Chem C 122(28):16168–16177
54.
Zurück zum Zitat Bijelic J, Stankovic A, Medvidovic-Kosanovic M, Markovic B, Cop P, Sun Y, Hajra S, Sahu M, Vukmirovic J, Markovic D, Kukovecz Á, Jagličic Z, Smarsly BM, Djerdj I (2020) Rational sol−gel-based synthesis design and magnetic, dielectric, and optical properties study of nanocrystalline Sr3Co2WO9 triple perovskite. J Phys Chem C 124(23):12794–12807 Bijelic J, Stankovic A, Medvidovic-Kosanovic M, Markovic B, Cop P, Sun Y, Hajra S, Sahu M, Vukmirovic J, Markovic D, Kukovecz Á, Jagličic Z, Smarsly BM, Djerdj I (2020) Rational sol−gel-based synthesis design and magnetic, dielectric, and optical properties study of nanocrystalline Sr3Co2WO9 triple perovskite. J Phys Chem C 124(23):12794–12807
55.
Zurück zum Zitat Sahu M, Hajra S, Choudhary RNP (2019) Structural, bulk permittivity, and magnetic properties of lead-free electronic material: Ba1Bi1Cu1Fe1Ni1Ti3O12. J Supercond Nov Magn 32(8):2613–2621 Sahu M, Hajra S, Choudhary RNP (2019) Structural, bulk permittivity, and magnetic properties of lead-free electronic material: Ba1Bi1Cu1Fe1Ni1Ti3O12. J Supercond Nov Magn 32(8):2613–2621
Metadaten
Titel
Protonation control of spin transport properties in magnetic single-molecule junctions
verfasst von
Shuai Qiu
Yuan-Yuan Miao
Guang-Ping Zhang
Jun-Feng Ren
Chuan-Kui Wang
Gui-Chao Hu
Publikationsdatum
08.09.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 34/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05213-1

Weitere Artikel der Ausgabe 34/2020

Journal of Materials Science 34/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.