Skip to main content

2023 | OriginalPaper | Buchkapitel

Pseudospectral Methods for the Stability Analysis of Delay Equations. Part I: The Infinitesimal Generator Approach

verfasst von : Dimitri Breda

Erschienen in: Controlling Delayed Dynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Delay equations generate dynamical systems on infinite-dimensional state spaces. Their stability analysis is not immediate and reduction to finite dimension is often the only chance. Numerical collocation via pseudospectral techniques recently emerged as an efficient solution. In this part we analyze the application of these methods to discretize the infinitesimal generator of the semigroup of solution operators associated to the system. The focus is on both local stability of equilibria and general bifurcation analysis of nonlinear problems, for either delay differential and renewal equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Recall that a compact linear operator \(K:X\rightarrow X\) satisfies \(\sigma (K)=\{0\}\cup \sigma _{p}(K)\) and either \(\sigma _{p}(K)\) has finitely-many points or they accumulate at 0.
 
2
We treat first DDEs for their longer tradition with respect to REs. Then, when dealing with coupled equations, we put REs first as in (1) following the convention in, e.g., Diekmann et al. (2008), due to the relative importance of REs with respect to DDEs in describing several models in population dynamics.
 
3
For a primer on Fréchet derivatives see (Ambrosetti and Prodi (1995), Chap. 1).
 
4
In what follows we use lower case letters for functions and upper case letters for their finite-dimensional counterparts, i.e., the vectors of their representation.
 
5
Anyway, let us also recall that Faber’s Theorem tells us that for any chosen set of nodes there is always a continuous function f for which \(\Vert p_{n}-f\Vert _{\infty }\) does not vanish, Faber (1914).
 
6
For an explanation of the term pseudospectral see (Brunner (2004), Sect. 1.7).
 
7
Note that pseudospacetral collocation is an alternative among many other ones, as, e.g., Galerkin-type or weighted-residuals approaches and series truncation. All these correspond in some sense to different choices of \(R_{n}\) and \(P_{n}\) and different strategies to obtain F. Note, however, that any choice must be suitably related to the features of X: e.g., there is no much sense in using Fourier series in \(C([a,b],\mathbb {R})\) or interpolation in \(L^{2}([a,b],\mathbb {R})\). Finally, let us remark that the choices above potentially lead to discretization approaches different from the one described in the rest of this chapter or in Breda (2023) when dealing with delay equations, see, e.g., Lehotzky and Insperger (2016) to name some examples.
 
8
For instance, if H acts on a domain \(\mathcal {D}(H)\subset X\) characterized by some given constraints (e.g., smoothness or boundary conditions), then the latter should be suitably taken into account in the discretization process, e.g., by explicitly replacing an equal number of collocation conditions (as, e.g., in Sect. 4.1) or by implicitly imposing such constraints in the construction of \(P_{n}\) (as, e.g., in Sect. 4.2).
 
9
Recall that in general a method of finite order, say m, applied to a function f of class \(C^{k}\) with \(k>m\) gives an error decaying as \(O(n^{-m})\) independently of k.
 
10
One can always rescale time to set \(\tau =1\) and hence fix the state space independently of the equation.
 
11
In fact, the range of \(P_{M}\) is not contained in \(\mathcal {D}(\mathcal {A}_{G})\), i.e., \((P_{M}\Psi )'(0)=L_{G}P_{M}\Psi \) does not hold for all \(\Psi \in Y_{M}\).
 
12
Let \(g\in C([-\tau ,0];\mathbb {R})\) and \(\{e_{1},\ldots ,e_{d_{Y}}\}\) be the canonical basis of \(\mathbb {R}^{d_{Y}}\). Then \(L_{G}g\) is a shorthand notation for the matrix \((L_{G}ge_{1}|\cdots |L_{G}ge_{d_{Y}})\in \mathbb {R}^{d_{Y}\times d_{Y}}\).
 
13
In fact, the range of \(P_{M}\) is now contained in \(\mathcal {D}(\mathcal {A}_{F})\) thanks to the first of (26).
 
14
A similar decompoistion is used below for \(L_{G}\) and note 12 applies to all \(L_{F,X}\), \(L_{F,Y}\), \(L_{G,Y}\) and \(L_{G,Y}\) with obvious modifications.
 
15
Indeed, Stirling’s formula for the factorial shows that the error decays as \(O(M^{-M})\).
 
16
Here “better” means that smaller values of M are required to reach a given tolerance.
 
17
Some work in this direction for DDEs can be found in Wu and Michiels (2012).
 
18
Although some indications are given in Breda et al. (2005), these may appear a little conservative and however a precise answer to the issue of choosing M is not available yet.
 
19
Here the term “abstract” refers to the infinite-dimensional state space on which the ODE is posed.
 
20
Recall in fact that \(P_{M}\) (and hence \(U_{0}\)) is defined only implicitly through the first of (31) (with F replacing \(L_{F}\)).
 
21
Just replace formally y(t) in (40) with \(e^{\lambda t}\).
 
22
Apart from the rightmost root \(\lambda =0\), we use as reference values for the other roots those computed with a very large value of M, viz. \(M=1000\). The same comment holds also for the other examples.
 
23
Concerning linerization of REs see (Diekmann et al. (2008), Sect. 3.5).
 
24
For a complete treatment see Breda et al. (2015a).
 
25
Formally, a coefficient \((\tau _{2}-\tau _{1})/2=1\) (for \(\tau _{1}=1\) and \(\tau _{2}=3\)) should appear in front of the sum as the weights are referred to the normalized integration interval \([-1,1]\).
 
26
It is left as an exercise to verify that this is indeed the rightmost couple (hint: write the characteristic equation and split it into real and imaginary parts).
 
27
For the smoothness of eigenfunctions of \(\mathcal {A}_{F}\) see (Breda and Liessi (2020), Sect. 5).
 
28
This value is approximated in Breda et al. (2013) by a pseudospectral approach slightly different from the one proposed here, difference due to an alternative treatment of the boundary condition in (10).
 
29
We did not report on the CPU time for the preceding examples as the computation of the eigenvalues is practically instantaneous.
 
30
Starting references to other techniques (and there are quite many of them nowadays) have been given in the introduction.
 
Literatur
Zurück zum Zitat Ambrosetti, A., & Prodi, G. (1995). A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics (Vol. 34). New York: Cambridge University Press. Ambrosetti, A., & Prodi, G. (1995). A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics (Vol. 34). New York: Cambridge University Press.
Zurück zum Zitat Andò, A., Breda, D., Liessi, D., Maset, S., Scarabel, F., & Vermiglio, R. (2022) 15 years or so of pseudospectral collocation methods for stability and bifurcation of delay equations. In G. Valmorbida, W. Michiels, & P. Pepe (Eds.), Incorporating constraints on the Analysis of Delay and Distributed Parameter Systems, Advaced Delays Dynamic Series (pp. 127–323). Springer. https://link.springer.com/chapter/10.1007/978-3-030-89014-8_7 Andò, A., Breda, D., Liessi, D., Maset, S., Scarabel, F., & Vermiglio, R. (2022) 15 years or so of pseudospectral collocation methods for stability and bifurcation of delay equations. In G. Valmorbida, W. Michiels, & P. Pepe (Eds.), Incorporating constraints on the Analysis of Delay and Distributed Parameter Systems, Advaced Delays Dynamic Series (pp. 127–323). Springer. https://​link.​springer.​com/​chapter/​10.​1007/​978-3-030-89014-8_​7
Zurück zum Zitat Batkai, A., & Piazzera, S. (2005). Semigroups for Delay Equations. Number 10 in Research Notes in Mathematics. Canada: A K Peters Ltd. Batkai, A., & Piazzera, S. (2005). Semigroups for Delay Equations. Number 10 in Research Notes in Mathematics. Canada: A K Peters Ltd.
Zurück zum Zitat Bellen, A., Guglielmi, A., Maset, S., & Zennaro, M. (2009). Recent trends in the numerical solution of retarded functional differential equations. Acta Numerica, 18, 1–110.MathSciNetCrossRef Bellen, A., Guglielmi, A., Maset, S., & Zennaro, M. (2009). Recent trends in the numerical solution of retarded functional differential equations. Acta Numerica, 18, 1–110.MathSciNetCrossRef
Zurück zum Zitat Bellen, A., & Zennaro, M. (2003). Numerical Methods for Delay Differential Equations. Numerical Mathemathics and Scientifing Computing Series. Oxford University Press. Bellen, A., & Zennaro, M. (2003). Numerical Methods for Delay Differential Equations. Numerical Mathemathics and Scientifing Computing Series. Oxford University Press.
Zurück zum Zitat Berrut, J. P., & Trefethen, L. N. (2004). Barycentric Lagrange interpolation. SIAM Review, 46(3), 501–517.MathSciNetCrossRef Berrut, J. P., & Trefethen, L. N. (2004). Barycentric Lagrange interpolation. SIAM Review, 46(3), 501–517.MathSciNetCrossRef
Zurück zum Zitat Breda, D. (2004). Numerical Computation of Characteristic Roots for Delay Differential Equations. Ph.D. thesis, Ph.D. in Computational Mathematics, Università di Padova. Breda, D. (2004). Numerical Computation of Characteristic Roots for Delay Differential Equations. Ph.D. thesis, Ph.D. in Computational Mathematics, Università di Padova.
Zurück zum Zitat Breda, D. (2010). Nonautonomous delay differential equations in Hilbert spaces and Lyapunov exponents. Differential and Integral Equations, 23(9–10), 935–956.MathSciNetMATH Breda, D. (2010). Nonautonomous delay differential equations in Hilbert spaces and Lyapunov exponents. Differential and Integral Equations, 23(9–10), 935–956.MathSciNetMATH
Zurück zum Zitat Breda, D. (2023). Pseudospectral methods for the stability analysis of delay equations. Part II: the solution operator approach. In D. Breda (Ed.), Controlling delayed dynamics: Advances in theory methods and applications, CISM Lecture Notes (pp. 95–116). Wien-New York: Springer. Breda, D. (2023). Pseudospectral methods for the stability analysis of delay equations. Part II: the solution operator approach. In D. Breda (Ed.), Controlling delayed dynamics: Advances in theory methods and applications, CISM Lecture Notes (pp. 95–116). Wien-New York: Springer.
Zurück zum Zitat Breda, D., Maset, S., & Vermiglio, R. (2005). Pseudospectral differencing methods for characteristic roots of delay differential equations. Journal on Scientific Computing, 27(2), 482–495.MathSciNetCrossRef Breda, D., Maset, S., & Vermiglio, R. (2005). Pseudospectral differencing methods for characteristic roots of delay differential equations. Journal on Scientific Computing, 27(2), 482–495.MathSciNetCrossRef
Zurück zum Zitat Breda, D., Diekmann, O., Maset, S., & Vermiglio, R. (2013). A numerical approach for investigating the stability of equilibria for structured population models. Journal of Biological Dynamics, 7(1), 4–20.MathSciNetCrossRef Breda, D., Diekmann, O., Maset, S., & Vermiglio, R. (2013). A numerical approach for investigating the stability of equilibria for structured population models. Journal of Biological Dynamics, 7(1), 4–20.MathSciNetCrossRef
Zurück zum Zitat Breda, D., Getto, P., Sánchez Sanz, J., & Vermiglio, R. (2015a). Computing the eigenvalues of realistic Daphnia models by pseudospectral methods. SIAM Journal on Scientific Computing, 37(6), 2607–2629. Breda, D., Getto, P., Sánchez Sanz, J., & Vermiglio, R. (2015a). Computing the eigenvalues of realistic Daphnia models by pseudospectral methods. SIAM Journal on Scientific Computing, 37(6), 2607–2629.
Zurück zum Zitat Breda, D., Maset, S., & Vermiglio, R. (2015b). Stability of Linear Delay Differential Equations—A Numerical Approach with MATLAB. SpringerBriefs in Control, Automation and Robotics. New York: Springer. Breda, D., Maset, S., & Vermiglio, R. (2015b). Stability of Linear Delay Differential Equations—A Numerical Approach with MATLAB. SpringerBriefs in Control, Automation and Robotics. New York: Springer.
Zurück zum Zitat Breda, D., Diekmann, O., Gyllenberg, M., Scarabel, F., & Vermiglio, R. (2016). Pseudospectral discretization of nonlinear delay equations: New prospects for numerical bifurcation analysis. SIAM Journal on Applied Dynamical Systems, 15(1), 1–23.MathSciNetCrossRef Breda, D., Diekmann, O., Gyllenberg, M., Scarabel, F., & Vermiglio, R. (2016). Pseudospectral discretization of nonlinear delay equations: New prospects for numerical bifurcation analysis. SIAM Journal on Applied Dynamical Systems, 15(1), 1–23.MathSciNetCrossRef
Zurück zum Zitat Breda, D., Diekmann, O., Liessi, D., & Scarabel, F. (2016). Numerical bifurcation analysis of a class of nonlinear renewal equations. Electronic Journal of Qualitative Theory of Differential Equations, 65, 1–24.MathSciNetCrossRef Breda, D., Diekmann, O., Liessi, D., & Scarabel, F. (2016). Numerical bifurcation analysis of a class of nonlinear renewal equations. Electronic Journal of Qualitative Theory of Differential Equations, 65, 1–24.MathSciNetCrossRef
Zurück zum Zitat Brunner, H. (2004). Collocation Methods for Volterra Integral and Related Functional Differential Equations. Number 15 in Cambridge monographs on applied and computational mathematics. Cambridge: Cambridge University Press. Brunner, H. (2004). Collocation Methods for Volterra Integral and Related Functional Differential Equations. Number 15 in Cambridge monographs on applied and computational mathematics. Cambridge: Cambridge University Press.
Zurück zum Zitat Butcher, E. A., Ma, H. T., Bueler, E., Averina, V., & Szabo, Z. (2004). Stability of linear time-periodic delay-differential equations via Chebyshev polynomials. International Journal for Numerical Methods in Engineering, 59, 895–922.MathSciNetCrossRef Butcher, E. A., Ma, H. T., Bueler, E., Averina, V., & Szabo, Z. (2004). Stability of linear time-periodic delay-differential equations via Chebyshev polynomials. International Journal for Numerical Methods in Engineering, 59, 895–922.MathSciNetCrossRef
Zurück zum Zitat Dhooge, A., Govaerts, W. J. F., & Kuznetsov, Y. A. (2003). MatCont: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software, 29(2), 141–164.MathSciNetCrossRef Dhooge, A., Govaerts, W. J. F., & Kuznetsov, Y. A. (2003). MatCont: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software, 29(2), 141–164.MathSciNetCrossRef
Zurück zum Zitat Dhooge, A., Govaerts, W. J. F., Kuznetsov, Y. A., Meijer, H. G. E., & Sautois, B. (2008). New features of the software MatCont for bifurcation analysis of dynamical systems. Mathematical and Computer Modelling of Dynamical Systems, 14(2), 147–175.MathSciNetCrossRef Dhooge, A., Govaerts, W. J. F., Kuznetsov, Y. A., Meijer, H. G. E., & Sautois, B. (2008). New features of the software MatCont for bifurcation analysis of dynamical systems. Mathematical and Computer Modelling of Dynamical Systems, 14(2), 147–175.MathSciNetCrossRef
Zurück zum Zitat Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.O. (1995). Delay Equations—Functional, Complex and Nonlinear Analysis. Number 110 in Applied Mathematical Sciences. New York: Springer. Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.O. (1995). Delay EquationsFunctional, Complex and Nonlinear Analysis. Number 110 in Applied Mathematical Sciences. New York: Springer.
Zurück zum Zitat Diekmann, O., Getto, P., & Gyllenberg, M. (2008). Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars. Journal on Mathematical Analysis, 39(4), 1023–1069.MathSciNetMATH Diekmann, O., Getto, P., & Gyllenberg, M. (2008). Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars. Journal on Mathematical Analysis, 39(4), 1023–1069.MathSciNetMATH
Zurück zum Zitat Diekmann, O., Gyllenberg, M., Metz, J. A. J., Nakaoka, S., & de Roos, A. M. (2010). Daphnia revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example. Journal of Mathematical Biology, 61(2), 277–318.MathSciNetCrossRef Diekmann, O., Gyllenberg, M., Metz, J. A. J., Nakaoka, S., & de Roos, A. M. (2010). Daphnia revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example. Journal of Mathematical Biology, 61(2), 277–318.MathSciNetCrossRef
Zurück zum Zitat Doedel, E. (1981). AUTO: a program for the automatic bifurcation analysis of autonomous systems. In Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing (vol. I, pp. 265–284), Winnipeg, Man. Doedel, E. (1981). AUTO: a program for the automatic bifurcation analysis of autonomous systems. In Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing (vol. I, pp. 265–284), Winnipeg, Man.
Zurück zum Zitat Doedel, E. (2007). Lecture notes on numerical analysis of nonlinear equations. In H.M. Osinga, B. Krauskopf, & J. Galán-Vioque, (Eds.), Numerical Continuation Methods for Dynamical Systems, Understanding Complex Systems (pp. 1–49). Springer. Doedel, E. (2007). Lecture notes on numerical analysis of nonlinear equations. In H.M. Osinga, B. Krauskopf, & J. Galán-Vioque, (Eds.), Numerical Continuation Methods for Dynamical Systems, Understanding Complex Systems (pp. 1–49). Springer.
Zurück zum Zitat Engel, K., & Nagel, R. (1999). One-Parameter Semigroups for Linear Evolution Equations. Number 194 in Graduate Texts in Mathematics. New York: Springer. Engel, K., & Nagel, R. (1999). One-Parameter Semigroups for Linear Evolution Equations. Number 194 in Graduate Texts in Mathematics. New York: Springer.
Zurück zum Zitat Ermentrout, B. (2002). Simulating, Analyzing, and Animating Dynamical Systems-A Guide to XPPAUT for Researchers and Students. Software—Environment—Tools seriesPhiladelphia: SIAM.CrossRef Ermentrout, B. (2002). Simulating, Analyzing, and Animating Dynamical Systems-A Guide to XPPAUT for Researchers and Students. Software—Environment—Tools seriesPhiladelphia: SIAM.CrossRef
Zurück zum Zitat Faber, George. (1914). Über die interpolatorische darstellung stetiger funktionen. Jahresber. Deut. Math. Verein., 23, 192–210.MATH Faber, George. (1914). Über die interpolatorische darstellung stetiger funktionen. Jahresber. Deut. Math. Verein., 23, 192–210.MATH
Zurück zum Zitat Getto, P., Gyllenberg, M., Nakata, Y., & Scarabel, F. (2019). Stability analysis of a state-dependent delay differential equation for cell maturation: Analytical and numerical methods. Journal of Mathematical Biology, 79(1), 281–328.MathSciNetCrossRef Getto, P., Gyllenberg, M., Nakata, Y., & Scarabel, F. (2019). Stability analysis of a state-dependent delay differential equation for cell maturation: Analytical and numerical methods. Journal of Mathematical Biology, 79(1), 281–328.MathSciNetCrossRef
Zurück zum Zitat Gottlieb, D., & Orszag, S. (1977). Numerical Analysis of Spectral Methods: Theory and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics (Vol. 26). Philadelphia: SIAM. Gottlieb, D., & Orszag, S. (1977). Numerical Analysis of Spectral Methods: Theory and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics (Vol. 26). Philadelphia: SIAM.
Zurück zum Zitat Gyllenberg, M., Scarabel, F., & Vermiglio, R. (2018). Equations with infinite delay: numerical bifurcation analysis via pseudospectral discretization. Applied Mathematics and Computation, 333, 490–505. Gyllenberg, M., Scarabel, F., & Vermiglio, R. (2018). Equations with infinite delay: numerical bifurcation analysis via pseudospectral discretization. Applied Mathematics and Computation, 333, 490–505.
Zurück zum Zitat Halem, J.K. (1977). Theory of Functional Differential Equations. Number 99 in Applied Mathematical Sciences, 1st edn. New York: Springer. Halem, J.K. (1977). Theory of Functional Differential Equations. Number 99 in Applied Mathematical Sciences, 1st edn. New York: Springer.
Zurück zum Zitat Hale, J.K., & Verduyn Lunel, S.M. (1993). Introduction to Functional Differential Equations. Number 99 in Applied Mathematical Sciences, 2nd edn. New York: Springer. Hale, J.K., & Verduyn Lunel, S.M. (1993). Introduction to Functional Differential Equations. Number 99 in Applied Mathematical Sciences, 2nd edn. New York: Springer.
Zurück zum Zitat Hutchinson, G. E. (1948). Circular causal systems in ecology. Annals of the New York Academy of Sciences, 50, 221–246. Hutchinson, G. E. (1948). Circular causal systems in ecology. Annals of the New York Academy of Sciences, 50, 221–246.
Zurück zum Zitat Inaba, H. (2017). Age-Structured Population Dynamics in Demography and Epidemiology. New York: Springer.CrossRef Inaba, H. (2017). Age-Structured Population Dynamics in Demography and Epidemiology. New York: Springer.CrossRef
Zurück zum Zitat Insperger, T., & Stépán, G. (2011). Semi-Discretization for Time-Delay Systems—Stability and Engineering Applications. Number 178 in Applied Mathematical Sciences. New York: Springer. Insperger, T., & Stépán, G. (2011). Semi-Discretization for Time-Delay SystemsStability and Engineering Applications. Number 178 in Applied Mathematical Sciences. New York: Springer.
Zurück zum Zitat Lehotzky, D., & Insperger, T. (2016). A pseudospectral tau approximation for time delay systems and its comparison with other weighted-residual-type methods. International Journal for Numerical Methods in Engineering, 108(6), 588–613.MathSciNetCrossRef Lehotzky, D., & Insperger, T. (2016). A pseudospectral tau approximation for time delay systems and its comparison with other weighted-residual-type methods. International Journal for Numerical Methods in Engineering, 108(6), 588–613.MathSciNetCrossRef
Zurück zum Zitat Mackey, M. C., & Glass, L. (1977). Oscillations and chaos in physiological control systems. Science, 197, 287–289.CrossRef Mackey, M. C., & Glass, L. (1977). Oscillations and chaos in physiological control systems. Science, 197, 287–289.CrossRef
Zurück zum Zitat Michiels, W. (2023). Design of structured controllers for linear time-delay systems. In D. Breda (Ed.), Controlling Delayed Dynamics: Advances in Theory, Methods and Applications, CISM Lecture Notes (pp. 247–288). Wien-New York: Springer. Michiels, W. (2023). Design of structured controllers for linear time-delay systems. In D. Breda (Ed.), Controlling Delayed Dynamics: Advances in Theory, Methods and Applications, CISM Lecture Notes (pp. 247–288). Wien-New York: Springer.
Zurück zum Zitat Michiels, W., & Niculescu, S. I. (2014). Stability, Control, and Computation for Time-Delay Systems. An Eigenvalue Based Approach. Number 27 in Advances in Design and Control. Philadelphia: SIAM. Michiels, W., & Niculescu, S. I. (2014). Stability, Control, and Computation for Time-Delay Systems. An Eigenvalue Based Approach. Number 27 in Advances in Design and Control. Philadelphia: SIAM.
Zurück zum Zitat Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations. Number 44 in Applied Mathematical Sciences. New York: Springer. Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations. Number 44 in Applied Mathematical Sciences. New York: Springer.
Zurück zum Zitat Priestley, H. A. (1990). Introduction to Complex Analysis. New York: Oxford University Press.MATH Priestley, H. A. (1990). Introduction to Complex Analysis. New York: Oxford University Press.MATH
Zurück zum Zitat Rivlin, T. (1981). An Introduction to the Approximation of Functions. New York: Dover.MATH Rivlin, T. (1981). An Introduction to the Approximation of Functions. New York: Dover.MATH
Zurück zum Zitat Scarabel, F., Breda, D., Diekmann, O., Gyllenberg, M., & Vermiglio, R. (2020). Numerical bifurcation analysis of physiologically structured population models via pseudospectral approximation. Vietnam Journal of Mathematic, 2020. To appear. Scarabel, F., Breda, D., Diekmann, O., Gyllenberg, M., & Vermiglio, R. (2020). Numerical bifurcation analysis of physiologically structured population models via pseudospectral approximation. Vietnam Journal of Mathematic, 2020. To appear.
Zurück zum Zitat Trefethen, L. N. (2000). Spectral Methods in MATLAB. Software—Environment—Tools SeriesPhiladelphia: SIAM.CrossRef Trefethen, L. N. (2000). Spectral Methods in MATLAB. Software—Environment—Tools SeriesPhiladelphia: SIAM.CrossRef
Zurück zum Zitat Trefethen, L. N. (2013). Approximation Theory and Approximation Practice. Number 128 in Other Titles in Applied Mathematics. Philadelphia: SIAM. Trefethen, L. N. (2013). Approximation Theory and Approximation Practice. Number 128 in Other Titles in Applied Mathematics. Philadelphia: SIAM.
Zurück zum Zitat Verudyn Lunel, S. M. (2023). The twin semigroup approach towards periodic neutral delay equations. In D. Breda (Ed.), Controlling Delayed Dynamics: Advances in Theory, Methods and Applications, CISM Lecture Notes (pp. 1–36). Wien-New York: Springer. Verudyn Lunel, S. M. (2023). The twin semigroup approach towards periodic neutral delay equations. In D. Breda (Ed.), Controlling Delayed Dynamics: Advances in Theory, Methods and Applications, CISM Lecture Notes (pp. 1–36). Wien-New York: Springer.
Zurück zum Zitat Weideman, J. A., & Reddy, S. C. (2000). A MATLAB differentiation matrix suite. ACM Transactions on Mathematical Software, 26(4), 465–519.MathSciNetCrossRef Weideman, J. A., & Reddy, S. C. (2000). A MATLAB differentiation matrix suite. ACM Transactions on Mathematical Software, 26(4), 465–519.MathSciNetCrossRef
Zurück zum Zitat Wu, Z., & Michiels, W. (2012). Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method. Journal of Computational and Applied Mathematics, 236, 2499–2514.MathSciNetCrossRef Wu, Z., & Michiels, W. (2012). Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method. Journal of Computational and Applied Mathematics, 236, 2499–2514.MathSciNetCrossRef
Metadaten
Titel
Pseudospectral Methods for the Stability Analysis of Delay Equations. Part I: The Infinitesimal Generator Approach
verfasst von
Dimitri Breda
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-01129-0_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.