Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

26.10.2019 | ORIGINAL ARTICLE | Ausgabe 1/2020

Journal of Material Cycles and Waste Management 1/2020

PSO–ANN-based prediction of cobalt leaching rate from waste lithium-ion batteries

Zeitschrift:
Journal of Material Cycles and Waste Management > Ausgabe 1/2020
Autoren:
Hossein Ebrahimzade, Gholam Reza Khayati, Mahin Schaffie
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Leaching is a complex solid–liquid reaction which has an important influence on the recovery efficiency of the spent lithium-ion batteries (LIBs). Therefore, it is of significant importance to utilize an appropriate technique to predict the effect of operating parameters on the optimized recovery rate. In the present study, a combined method of the artificial neural network (ANN) and particle swarm optimization algorithm (PSO) was used as a model to predict the leaching efficiency of cobalt from spent LIBs. To find the dependency of the leached percentage of cobalt on the operational parameters as model inputs, 42 repeatable numerous experiments are performed using H2SO4 in the presence of H2O2. It was found that the proposed model can be a useful technique in the demonstration of the nonlinear relationship between the leaching efficiency and the process parameters. The performance of PSO–ANN models was validated by statistical thresholds and compared with those of common ANN technique. Moreover, it was found that the pulp density of the leaching solution and the concentration of sulfuric acid were the most important reaction parameters of the spent LIBs recovery, respectively.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2020

Journal of Material Cycles and Waste Management 1/2020 Zur Ausgabe