Skip to main content

2018 | OriginalPaper | Buchkapitel

PSO-Based Search Rules for Aerial Swarms Against Unexplored Vector Fields via Genetic Programming

verfasst von : Palina Bartashevich, Illya Bakurov, Sanaz Mostaghim, Leonardo Vanneschi

Erschienen in: Parallel Problem Solving from Nature – PPSN XV

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we study Particle Swarm Optimization (PSO) as a collective search mechanism for individuals (such as aerial micro-robots) which are supposed to search in environments with unknown external dynamics. In order to deal with the unknown disturbance, we present new PSO equations which are evolved using Genetic Programming (GP) with a semantically diverse starting population, seeded by the Evolutionary Demes Despeciation Algorithm (EDDA), that generalizes better than standard GP in the presence of unknown dynamics. The analysis of the evolved equations shows that with only small modifications in the velocity equation, PSO can achieve collective search behavior while being unaware of the dynamic external environment, mimicking the zigzag upwind flights of birds towards the food source.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bartashevich, P., Bakurov, I., Mostaghim, S., Vanneschi, L.: Evolving PSO algorithm design in vector fields using geometric semantic GP. In: Proceedings of the ACM Genetic and Evolutionary Computation Conference (GECCO 2018), Kyoto, July 2018, 2 p. (To appear) Bartashevich, P., Bakurov, I., Mostaghim, S., Vanneschi, L.: Evolving PSO algorithm design in vector fields using geometric semantic GP. In: Proceedings of the ACM Genetic and Evolutionary Computation Conference (GECCO 2018), Kyoto, July 2018, 2 p. (To appear)
2.
Zurück zum Zitat Bartashevich, P., Grimaldi, L., Mostaghim, S.: PSO-based search mechanism in dynamic environments: swarms in vector fields. In: 2017 IEEE Congress on Evolutionary Computation, pp. 1263–1270 (2017) Bartashevich, P., Grimaldi, L., Mostaghim, S.: PSO-based search mechanism in dynamic environments: swarms in vector fields. In: 2017 IEEE Congress on Evolutionary Computation, pp. 1263–1270 (2017)
3.
Zurück zum Zitat Clerc, M.: Stagnation analysis in particle swarm optimization or what happens when nothing happens. Technical report (2006) Clerc, M.: Stagnation analysis in particle swarm optimization or what happens when nothing happens. Technical report (2006)
5.
Zurück zum Zitat Di Chio, C., Poli, R., Langdon, W.B.: Evolution of force-generating equations for PSO using GP. In: Proceedings of the 2005 AI*IA Workshop on Evolutionary Computation (2005) Di Chio, C., Poli, R., Langdon, W.B.: Evolution of force-generating equations for PSO using GP. In: Proceedings of the 2005 AI*IA Workshop on Evolutionary Computation (2005)
7.
Zurück zum Zitat Diosan, L., Oltean, M.: What else is the evolution of PSO telling us? J. Artif. Evol. Appl. 1, 1–12 (2008)CrossRef Diosan, L., Oltean, M.: What else is the evolution of PSO telling us? J. Artif. Evol. Appl. 1, 1–12 (2008)CrossRef
8.
Zurück zum Zitat Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1, 28–39 (2006)CrossRef Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1, 28–39 (2006)CrossRef
9.
Zurück zum Zitat Erskine, A., Herrmann, J.M.: Critical Dynamics in Particle Swarm Optimization. CoRR (2014) Erskine, A., Herrmann, J.M.: Critical Dynamics in Particle Swarm Optimization. CoRR (2014)
10.
Zurück zum Zitat Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers Inc., San Francisco (2001) Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers Inc., San Francisco (2001)
11.
Zurück zum Zitat Langdon, W.B., Poli, R.: Evolving problems to learn about particle swarm optimisers and other search algorithms. IEEE Trans. Evol. Comput. 11(5), 561–578 (2007)CrossRef Langdon, W.B., Poli, R.: Evolving problems to learn about particle swarm optimisers and other search algorithms. IEEE Trans. Evol. Comput. 11(5), 561–578 (2007)CrossRef
12.
Zurück zum Zitat Lyle, N.L., Howard, W.: The velocity dependence of aerodynamic drag: a primer for mathematicians. Math. Assoc. Am. 106, 127–135 (1999)MathSciNetCrossRef Lyle, N.L., Howard, W.: The velocity dependence of aerodynamic drag: a primer for mathematicians. Math. Assoc. Am. 106, 127–135 (1999)MathSciNetCrossRef
13.
Zurück zum Zitat Moraglio, A., Krawiec, K.: Semantic genetic programming. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 603–627. ACM (2015) Moraglio, A., Krawiec, K.: Semantic genetic programming. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 603–627. ACM (2015)
14.
Zurück zum Zitat Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geometric semantic crossovers. Genet. Program. Evolvable Mach. 16, 351–386 (2015)CrossRef Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geometric semantic crossovers. Genet. Program. Evolvable Mach. 16, 351–386 (2015)CrossRef
15.
Zurück zum Zitat Poli, R., Di Chio, C., Langdon, W.B.: Exploring extended particle swarms: a genetic programming approach. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, New York, USA, pp. 169–176 (2005) Poli, R., Di Chio, C., Langdon, W.B.: Exploring extended particle swarms: a genetic programming approach. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, New York, USA, pp. 169–176 (2005)
17.
Zurück zum Zitat Runka, A.: Evolving an edge selection formula for ant colony optimization. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1075–1082. ACM (2009) Runka, A.: Evolving an edge selection formula for ant colony optimization. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1075–1082. ACM (2009)
20.
Zurück zum Zitat Vanneschi, L., Bakurov, I., Castelli, M.: An initialization technique for geometric semantic GP based on demes evolution and despeciation. In: 2017 IEEE Congress on Evolutionary Computation, pp. 113–120 (2017) Vanneschi, L., Bakurov, I., Castelli, M.: An initialization technique for geometric semantic GP based on demes evolution and despeciation. In: 2017 IEEE Congress on Evolutionary Computation, pp. 113–120 (2017)
22.
Zurück zum Zitat Wilke, D.N., Kok, S., Groenwold, A.A.: Comparison of linear and classical velocity update rules in particle swarm optimization: notes on scale and frame invariance. Int. J. Numer. Methods Eng. 70(8), 985–1008 (2007)MathSciNetCrossRef Wilke, D.N., Kok, S., Groenwold, A.A.: Comparison of linear and classical velocity update rules in particle swarm optimization: notes on scale and frame invariance. Int. J. Numer. Methods Eng. 70(8), 985–1008 (2007)MathSciNetCrossRef
23.
Zurück zum Zitat Wyatt, T.: Pheromones and Animal Behavior: Chemical Signals and Signatures. Cambridge University Press, Cambridge (2014) Wyatt, T.: Pheromones and Animal Behavior: Chemical Signals and Signatures. Cambridge University Press, Cambridge (2014)
Metadaten
Titel
PSO-Based Search Rules for Aerial Swarms Against Unexplored Vector Fields via Genetic Programming
verfasst von
Palina Bartashevich
Illya Bakurov
Sanaz Mostaghim
Leonardo Vanneschi
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-99253-2_4