Skip to main content
Erschienen in: Journal of Materials Science 7/2018

14.12.2017 | Energy materials

PTFE/SPEEK/PDDA/PSS composite membrane for vanadium redox flow battery application

verfasst von: Xiangguo Teng, Cong Yu, Xiufen Wu, Yichao Dong, Peng Gao, Huili Hu, Yongming Zhu, Jicui Dai

Erschienen in: Journal of Materials Science | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

How to solve the crossover of vanadium ions through ion exchange membrane is a key issue in vanadium redox flow battery (VRB), especially for ultra-thin membranes used for VRB to obtain a lower cell resistance. Herein, an ultra-thin (~ 30 μm) PTFE/SPEEK [polytetrafluoroethylene/sulfonated poly(ether ether ketone), P/S] membrane is successfully prepared and modified by using layer-by-layer (LBL) self-assembly technique with polycation poly(diallyldimethylammonium chloride) (PDDA) and polyanion poly(sodium styrene sulfonate) (PSS). P/S membranes are alternatively immersed in positively and negatively charged polyelectrolyte to form 2 to 8 bilayers onto its surface. Consequently, a series of P/S-[PDDA/PSS] n (n is the number of multilayers) membranes are fabricated. Both the physicochemical properties and VRB performances of the P/S-[PDDA/PSS] n membranes are then investigated in detail. Results show that the ion selectivity of the P/S-[PDDA/PSS] n membranes is much higher than that of pristine P/S membrane, especially for P/S-[PDDA/PSS]6 membrane. As a result, the VRB with the P/S-[PDDA/PSS]6 membrane exhibits the highest coulombic efficiency (CE) of 96.5% at 80 mA cm−2, the highest voltage efficiency of 94.7% at 40 mA cm−2 and the highest energy efficiency of 87.7% at both 40 and 50 mA cm−2, respectively. In addition, 80 times charge–discharge test proves that the P/S-[PDDA/PSS]6 membrane possesses high stability and no obvious CE decay after running. All the results show that the LBL technique is an effective way to prepare ultra-thin membrane with high ion selectivity for VRB application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613CrossRef Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613CrossRef
2.
Zurück zum Zitat Soloveichik GL (2015) Flow batteries: current status and trends. Chem Rev 115:11533–11558CrossRef Soloveichik GL (2015) Flow batteries: current status and trends. Chem Rev 115:11533–11558CrossRef
4.
Zurück zum Zitat Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164CrossRef Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164CrossRef
6.
Zurück zum Zitat Wei X, Pan W, Duan W, Hollas A, Yang Z, Li B, Nie Z, Liu J, Reed D, Wang W, Sprenkle V (2017) Materials and systems for organic redox flow batteries: status and challenges. ACS Energy Lett 2:2187–2204CrossRef Wei X, Pan W, Duan W, Hollas A, Yang Z, Li B, Nie Z, Liu J, Reed D, Wang W, Sprenkle V (2017) Materials and systems for organic redox flow batteries: status and challenges. ACS Energy Lett 2:2187–2204CrossRef
7.
Zurück zum Zitat Leung P, Shah AA, Sanz L, Flox C, Morante JR, Xu Q, Mohamed MR, Ponce De León C, Walsh FC (2017) Recent developments in organic redox flow batteries: a critical review. J Power Sources 360:243–283CrossRef Leung P, Shah AA, Sanz L, Flox C, Morante JR, Xu Q, Mohamed MR, Ponce De León C, Walsh FC (2017) Recent developments in organic redox flow batteries: a critical review. J Power Sources 360:243–283CrossRef
8.
Zurück zum Zitat Gobinath PR, Anthony MV (2016) The zinc bromine flow battery. Springer, Singapore, pp 2–3 Gobinath PR, Anthony MV (2016) The zinc bromine flow battery. Springer, Singapore, pp 2–3
9.
Zurück zum Zitat Zhou H, Zhang H, Zhao P, Yi B (2006) A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery. Electrochim Acta 51:6304–6312CrossRef Zhou H, Zhang H, Zhao P, Yi B (2006) A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery. Electrochim Acta 51:6304–6312CrossRef
10.
Zurück zum Zitat Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) New all-vanadium redox flow cell. J Electrochem Soc 133:1057–1058CrossRef Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) New all-vanadium redox flow cell. J Electrochem Soc 133:1057–1058CrossRef
11.
Zurück zum Zitat Jelyani MZ, Rashid-Nadimi S, Asghari S (2017) Treated carbon felt as electrode material in vanadium redox flow batteries: a study of the use of carbon nanotubes as electrocatalyst. J Solid State Electrochem 21:69–79CrossRef Jelyani MZ, Rashid-Nadimi S, Asghari S (2017) Treated carbon felt as electrode material in vanadium redox flow batteries: a study of the use of carbon nanotubes as electrocatalyst. J Solid State Electrochem 21:69–79CrossRef
12.
Zurück zum Zitat Wang G, Zhang J, Zhang J, Chen J, Zhu S, Liu X, Wang R (2017) Sulfonated poly(ether ether ketone)/poly(vinylidene fluoride)/graphene composite membrane for a vanadium redox flow battery. J Solid State Electrchem 21:1185–1194CrossRef Wang G, Zhang J, Zhang J, Chen J, Zhu S, Liu X, Wang R (2017) Sulfonated poly(ether ether ketone)/poly(vinylidene fluoride)/graphene composite membrane for a vanadium redox flow battery. J Solid State Electrchem 21:1185–1194CrossRef
13.
Zurück zum Zitat Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101:27–40CrossRef Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101:27–40CrossRef
14.
Zurück zum Zitat Pezeshki AM, Tang ZJ, Fujimoto C, Sun CN, Mench MM, Zawodzinski TA (2016) Full cell study of diels alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries. J Electrochem Soc 163:A5154–A5162CrossRef Pezeshki AM, Tang ZJ, Fujimoto C, Sun CN, Mench MM, Zawodzinski TA (2016) Full cell study of diels alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries. J Electrochem Soc 163:A5154–A5162CrossRef
15.
Zurück zum Zitat Chen D, Wang S, Xiao M, Han D, Meng Y (2011) Synthesis of sulfonated poly(fluorenyl ether thioether ketone)s with bulky-block structure and its application in vanadium redox flow battery. Polymer 52:5312–5319CrossRef Chen D, Wang S, Xiao M, Han D, Meng Y (2011) Synthesis of sulfonated poly(fluorenyl ether thioether ketone)s with bulky-block structure and its application in vanadium redox flow battery. Polymer 52:5312–5319CrossRef
16.
Zurück zum Zitat Jeong S, Kim L, Kwon Y, Kim S (2014) Effect of nafion membrane thickness on performance of vanadium redox flow battery. Korean J Chem Eng 31:2081–2087CrossRef Jeong S, Kim L, Kwon Y, Kim S (2014) Effect of nafion membrane thickness on performance of vanadium redox flow battery. Korean J Chem Eng 31:2081–2087CrossRef
17.
Zurück zum Zitat Doan TNL, Hoang TKA, Chen P (2015) Recent development of polymer membranes as separators for all-vanadium redox flow batteries. RSC Adv 5:72805–72815CrossRef Doan TNL, Hoang TKA, Chen P (2015) Recent development of polymer membranes as separators for all-vanadium redox flow batteries. RSC Adv 5:72805–72815CrossRef
18.
Zurück zum Zitat Dai W, Shen Y, Li Z, Yu L, Xi J, Qiu X (2014) SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. J Mater Chem A 2:12423–12432CrossRef Dai W, Shen Y, Li Z, Yu L, Xi J, Qiu X (2014) SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. J Mater Chem A 2:12423–12432CrossRef
19.
Zurück zum Zitat Xi J, Li Z, Yu L, Yin B, Wang L, Liu L, Qiu X, Chen L (2015) Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery. J Power Sources 285:195–204CrossRef Xi J, Li Z, Yu L, Yin B, Wang L, Liu L, Qiu X, Chen L (2015) Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery. J Power Sources 285:195–204CrossRef
20.
Zurück zum Zitat Winardi S, Raghu SC, Oo MO, Yan Q, Wai N, Lim TM, Skyllas-Kazacos M (2014) Sulfonated poly (ether ether ketone)-based proton exchange membranes for vanadium redox battery applications. J Membr Sci 450:313–322CrossRef Winardi S, Raghu SC, Oo MO, Yan Q, Wai N, Lim TM, Skyllas-Kazacos M (2014) Sulfonated poly (ether ether ketone)-based proton exchange membranes for vanadium redox battery applications. J Membr Sci 450:313–322CrossRef
21.
Zurück zum Zitat Park S, Kim H (2016) Preparation of a sulfonated poly(ether ether ketone)-based composite membrane with phenyl isocyanate treated sulfonated graphene oxide for a vanadium redox flow battery. J Electrochem Soc 163:A2293–A2298CrossRef Park S, Kim H (2016) Preparation of a sulfonated poly(ether ether ketone)-based composite membrane with phenyl isocyanate treated sulfonated graphene oxide for a vanadium redox flow battery. J Electrochem Soc 163:A2293–A2298CrossRef
22.
Zurück zum Zitat Hyeon DH, Chun JH, Lee CH, Jung HC, Kim SH (2015) Composite membranes based on sulfonated poly(ether ether ketone) and SiO2 for a vanadium redox flow battery. Korean J Chem Eng 32:1554–1563CrossRef Hyeon DH, Chun JH, Lee CH, Jung HC, Kim SH (2015) Composite membranes based on sulfonated poly(ether ether ketone) and SiO2 for a vanadium redox flow battery. Korean J Chem Eng 32:1554–1563CrossRef
23.
Zurück zum Zitat Wei W, Zhang H, Li X, Mai Z, Zhang H (2012) Poly(tetrafluoroethylene) reinforced sulfonated poly(ether ether ketone) membranes for vanadium redox flow battery application. J Power Sources 208:421–425CrossRef Wei W, Zhang H, Li X, Mai Z, Zhang H (2012) Poly(tetrafluoroethylene) reinforced sulfonated poly(ether ether ketone) membranes for vanadium redox flow battery application. J Power Sources 208:421–425CrossRef
24.
Zurück zum Zitat Dai J, Teng X, Song Y, Jiang X, Yin G (2016) A super thin polytetrafluoroethylene/sulfonated poly(ether ether ketone) membrane with 91% energy efficiency and high stability for vanadium redox flow battery. J Appl Polym Sci 133:43593–43601 Dai J, Teng X, Song Y, Jiang X, Yin G (2016) A super thin polytetrafluoroethylene/sulfonated poly(ether ether ketone) membrane with 91% energy efficiency and high stability for vanadium redox flow battery. J Appl Polym Sci 133:43593–43601
25.
Zurück zum Zitat Xiang Y, Lu S, Jiang SP (2012) Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chem Soc Rev 41:7291–7321CrossRef Xiang Y, Lu S, Jiang SP (2012) Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chem Soc Rev 41:7291–7321CrossRef
26.
Zurück zum Zitat Xi JY, Wu ZH, Teng XG, Zhao YT, Chen LQ, Qiu XP (2008) Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J Mater Chem 18:1232–1238CrossRef Xi JY, Wu ZH, Teng XG, Zhao YT, Chen LQ, Qiu XP (2008) Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J Mater Chem 18:1232–1238CrossRef
27.
Zurück zum Zitat Wang Y, Wang S, Xiao M, Han D, Hickner M, Meng Y (2013) Layer-by-layer self-assembly of PDDA/PSS-SPFEK composite membrane with low vanadium permeability for vanadium redox flow battery. RSC Adv 3:15467–15474CrossRef Wang Y, Wang S, Xiao M, Han D, Hickner M, Meng Y (2013) Layer-by-layer self-assembly of PDDA/PSS-SPFEK composite membrane with low vanadium permeability for vanadium redox flow battery. RSC Adv 3:15467–15474CrossRef
28.
Zurück zum Zitat Joseph N, Ahmadiannamini P, Hoogenboom R, Vankelecom IFJ (2014) Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polym Chem 5:1817–1831CrossRef Joseph N, Ahmadiannamini P, Hoogenboom R, Vankelecom IFJ (2014) Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polym Chem 5:1817–1831CrossRef
29.
Zurück zum Zitat Gu J, Lee S, Stafford CM, Lee JS, Choi W, Kim B, Baek K, Chan EP, Chung JY, Bang J, Lee J (2013) Molecular layer-by-layer assembled thin-film composite membranes for water desalination. Adv Mater 25:4778–4782CrossRef Gu J, Lee S, Stafford CM, Lee JS, Choi W, Kim B, Baek K, Chan EP, Chung JY, Bang J, Lee J (2013) Molecular layer-by-layer assembled thin-film composite membranes for water desalination. Adv Mater 25:4778–4782CrossRef
30.
Zurück zum Zitat Zhang DZ, Jiang CX, Liu JJ, Cao YH (2017) Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens Actuat B Chem 247:875–882CrossRef Zhang DZ, Jiang CX, Liu JJ, Cao YH (2017) Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens Actuat B Chem 247:875–882CrossRef
31.
Zurück zum Zitat Fenoy GE, Maza E, Zelaya E, Marmisolle WA, Azzaroni O (2017) Layer-by-layer assemblies of highly connected polyelectrolyte-capped-Pt nanoparticles for electrocatalysis of hydrogen evolution reaction. Appl Surf Sci 416:24–32CrossRef Fenoy GE, Maza E, Zelaya E, Marmisolle WA, Azzaroni O (2017) Layer-by-layer assemblies of highly connected polyelectrolyte-capped-Pt nanoparticles for electrocatalysis of hydrogen evolution reaction. Appl Surf Sci 416:24–32CrossRef
33.
Zurück zum Zitat Tugba Camic B, Oytun F, Hasan Aslan M, Jeong Shin H, Choi H, Basarir F (2017) Fabrication of a transparent conducting electrode based on graphene/silver nanowires via layer-by-layer method for organic photovoltaic devices. J Colloid Interface Sci 505:79–86CrossRef Tugba Camic B, Oytun F, Hasan Aslan M, Jeong Shin H, Choi H, Basarir F (2017) Fabrication of a transparent conducting electrode based on graphene/silver nanowires via layer-by-layer method for organic photovoltaic devices. J Colloid Interface Sci 505:79–86CrossRef
34.
Zurück zum Zitat Podgorna K, Jankowska K, Szczepanowicz K (2017) Polysaccharide gel nanoparticles modified by the Layer-by-Layer technique for biomedical applications. Colloid Surf A 519:192–198CrossRef Podgorna K, Jankowska K, Szczepanowicz K (2017) Polysaccharide gel nanoparticles modified by the Layer-by-Layer technique for biomedical applications. Colloid Surf A 519:192–198CrossRef
36.
Zurück zum Zitat Wang Y, Wang S, Xiao M, Han D, Meng Y (2014) Preparation and characterization of a novel layer-by-layer porous composite membrane for vanadium redox flow battery (VRB) applications. Int J Hydrog Energy 39:16088–16095CrossRef Wang Y, Wang S, Xiao M, Han D, Meng Y (2014) Preparation and characterization of a novel layer-by-layer porous composite membrane for vanadium redox flow battery (VRB) applications. Int J Hydrog Energy 39:16088–16095CrossRef
37.
Zurück zum Zitat Lu S, Wu C, Liang D, Tan Q, Xiang Y (2014) Layer-by-layer self-assembly of Nafion-[CS-PWA] composite membranes with suppressed vanadium ion crossover for vanadium redox flow battery applications. RSC Adv 4:24831–24837CrossRef Lu S, Wu C, Liang D, Tan Q, Xiang Y (2014) Layer-by-layer self-assembly of Nafion-[CS-PWA] composite membranes with suppressed vanadium ion crossover for vanadium redox flow battery applications. RSC Adv 4:24831–24837CrossRef
38.
Zurück zum Zitat Lin H, Yu TL, Huang L, Chen L, Shen K, Jung G (2005) Nafion/PTFE composite membranes for direct methanol fuel cell applications. J Power Sources 150:11–19CrossRef Lin H, Yu TL, Huang L, Chen L, Shen K, Jung G (2005) Nafion/PTFE composite membranes for direct methanol fuel cell applications. J Power Sources 150:11–19CrossRef
39.
Zurück zum Zitat Kim J, Jeon J, Kwak S (2017) Sulfonated poly(ether ether ketone) composite membranes containing microporous layered silicate AMH-3 for improved membrane performance in vanadium redox flow batteries. Electrochim Acta 243:220–227CrossRef Kim J, Jeon J, Kwak S (2017) Sulfonated poly(ether ether ketone) composite membranes containing microporous layered silicate AMH-3 for improved membrane performance in vanadium redox flow batteries. Electrochim Acta 243:220–227CrossRef
40.
Zurück zum Zitat Mohammadi T, Kazacos MS (1997) Evaluation of the chemical stability of some membranes in vanadium solution. J Appl Electrochem 27:153–160CrossRef Mohammadi T, Kazacos MS (1997) Evaluation of the chemical stability of some membranes in vanadium solution. J Appl Electrochem 27:153–160CrossRef
Metadaten
Titel
PTFE/SPEEK/PDDA/PSS composite membrane for vanadium redox flow battery application
verfasst von
Xiangguo Teng
Cong Yu
Xiufen Wu
Yichao Dong
Peng Gao
Huili Hu
Yongming Zhu
Jicui Dai
Publikationsdatum
14.12.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1903-y

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Science 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.