Skip to main content
Erschienen in: Wireless Networks 6/2019

09.03.2018

Pulse-level beam-switching for terahertz networks

verfasst von: Jian Lin, Mary Ann Weitnauer

Erschienen in: Wireless Networks | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Communication in Terahertz (THz) band is envisioned as a promising technology to meet the ever-growing data rate demand, and to enable new applications in both nano-scale and macro-scale wireless paradigms. In this study, we propose the first system-level design that is suitable for THz communication in macro-scale range with 100+ Gbps data rate. The design is based on the proposed terahertz pulse-level beam-switching with energy control (TRPLE), and motivated by the rise in Graphene-based electronics, which include not only compact generator and detector for pulse communication, but also the capability of beam scanning aided with nano-antenna-arrays. The very high path loss seen in THz wireless channel requires the use of narrow beam to reach longer transmission ranges. On the other hand, impulse radio that emits femtosecond-long pulses allows the beam direction to steer at pulse-level, rather than at packet-level. For TRPLE, we mathematically analyze the data rate for an arbitrary wireless link under the THz channel characteristics and the energy modulation scheme. Then, a novel optimization model is formulated to solve the parameters of the inter-pulse separation and the inter-symbol separation, in order to maximize the data rate while meeting the interference requirement. With the optimization, the data rate of 167 Gbps is shown achievable for most users in 20-m range. A MAC protocol framework is then presented to harness the benefits of the pulse separation optimization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the case of LOS, \(\psi\) is NULL.
 
Literatur
1.
Zurück zum Zitat Akyildiz, I. F., & Jornet, J. M. (2016). Realizing ultra-massive mimo (1024 × 1024) communication in the (0.06-10) terahertz band. Nano Communication Networks, 8, 46–54.CrossRef Akyildiz, I. F., & Jornet, J. M. (2016). Realizing ultra-massive mimo (1024 × 1024) communication in the (0.06-10) terahertz band. Nano Communication Networks, 8, 46–54.CrossRef
2.
Zurück zum Zitat Akyildiz, I. F., Jornet, J. M., & Pierobon, M. (2011). Nanonetworks: A new frontier in communications. Communications of the ACM, 54(11), 84–89.CrossRef Akyildiz, I. F., Jornet, J. M., & Pierobon, M. (2011). Nanonetworks: A new frontier in communications. Communications of the ACM, 54(11), 84–89.CrossRef
3.
Zurück zum Zitat Akyildiz, I. F., Jornet, J. M., & Han, C. (2014). Teranets: Ultra-broadband communication networks in the terahertz band. IEEE Wireless Communications, 21(4), 130–135.CrossRef Akyildiz, I. F., Jornet, J. M., & Han, C. (2014). Teranets: Ultra-broadband communication networks in the terahertz band. IEEE Wireless Communications, 21(4), 130–135.CrossRef
4.
Zurück zum Zitat An, X., Venkatesha Prasad, R., & Niemegeers, I. (2011). Impact of antenna pattern and link model on directional neighbor discovery in 60 GHz networks. IEEE Transactions on Wireless Communications, 10(5), 1435–1447.CrossRef An, X., Venkatesha Prasad, R., & Niemegeers, I. (2011). Impact of antenna pattern and link model on directional neighbor discovery in 60 GHz networks. IEEE Transactions on Wireless Communications, 10(5), 1435–1447.CrossRef
5.
Zurück zum Zitat Beckmann, P., & Spizzichino, A. (1987). The scattering of electromagnetic waves from rough surfaces (p. 1). Norwood: Artech House Inc.MATH Beckmann, P., & Spizzichino, A. (1987). The scattering of electromagnetic waves from rough surfaces (p. 1). Norwood: Artech House Inc.MATH
6.
Zurück zum Zitat Cacciapuoti, A. S. (2017). Mobility-aware user association for 5G mmWave networks. IEEE Access, 5, 21497–21507.CrossRef Cacciapuoti, A. S. (2017). Mobility-aware user association for 5G mmWave networks. IEEE Access, 5, 21497–21507.CrossRef
8.
Zurück zum Zitat Choudhury, R., Yang, X., Ramanathan, R., & Vaidya, N. (2006). On designing MAC protocols for wireless networks using directional antennas. IEEE Transactions on Mobile Computing, 5(5), 477–491.CrossRef Choudhury, R., Yang, X., Ramanathan, R., & Vaidya, N. (2006). On designing MAC protocols for wireless networks using directional antennas. IEEE Transactions on Mobile Computing, 5(5), 477–491.CrossRef
9.
Zurück zum Zitat Esquius-Morote, M., Gomez-Diaz, J., & Perruisseau-Carrier, J. (2014). Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Transactions on Terahertz Science and Technology, 4(1), 116–122.CrossRef Esquius-Morote, M., Gomez-Diaz, J., & Perruisseau-Carrier, J. (2014). Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Transactions on Terahertz Science and Technology, 4(1), 116–122.CrossRef
10.
Zurück zum Zitat Federici, J., & Moeller, L. (2010). Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 107(11), 111101–111122.CrossRef Federici, J., & Moeller, L. (2010). Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 107(11), 111101–111122.CrossRef
11.
Zurück zum Zitat Huang, K. C., & Wang, Z. (2011). Terahertz terabit wireless communication. IEEE Microwave Magazine, 12(4), 108–116.CrossRef Huang, K. C., & Wang, Z. (2011). Terahertz terabit wireless communication. IEEE Microwave Magazine, 12(4), 108–116.CrossRef
12.
Zurück zum Zitat Jornet, J., & Akyildiz, I. (2011a). Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.CrossRef Jornet, J., & Akyildiz, I. (2011a). Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.CrossRef
13.
Zurück zum Zitat Jornet, J., & Akyildiz, I. (2011b). Information capacity of pulse-based wireless nanosensor networks. In IEEE SECON (pp. 80–88). Jornet, J., & Akyildiz, I. (2011b). Information capacity of pulse-based wireless nanosensor networks. In IEEE SECON (pp. 80–88).
14.
Zurück zum Zitat Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE Journal on Selected Areas in Communications, 31(12), 685–694.CrossRef Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE Journal on Selected Areas in Communications, 31(12), 685–694.CrossRef
15.
Zurück zum Zitat Knap, W., Teppe, F., Dyakonova, N., Coquillat, D., & Łusakowski, J. (2008). Plasma wave oscillations in nanometer field effect transistors for terahertz detection and emission. Journal of Physics: Condensed Matter, 20(38), 384205. Knap, W., Teppe, F., Dyakonova, N., Coquillat, D., & Łusakowski, J. (2008). Plasma wave oscillations in nanometer field effect transistors for terahertz detection and emission. Journal of Physics: Condensed Matter, 20(38), 384205.
16.
Zurück zum Zitat Koch, M. (2007). Terahertz communications: A 2020 vision. In Terahertz frequency detection and identification of materials and objects (pp. 325–338). Netherlands: Springer. Koch, M. (2007). Terahertz communications: A 2020 vision. In Terahertz frequency detection and identification of materials and objects (pp. 325–338). Netherlands: Springer.
17.
Zurück zum Zitat Korakis, T., Jakllari, G., & Tassiulas, L. (2008). CDR-MAC: A protocol for full exploitation of directional antennas in ad hoc wireless networks. IEEE Transactions on Mobile Computing, 7(2), 145–155.CrossRef Korakis, T., Jakllari, G., & Tassiulas, L. (2008). CDR-MAC: A protocol for full exploitation of directional antennas in ad hoc wireless networks. IEEE Transactions on Mobile Computing, 7(2), 145–155.CrossRef
18.
Zurück zum Zitat Liberti, J., & Rappaport, T. (1996). A geometrically based model for line-of-sight multipath radio channels. In Vehicular technology conference (pp. 844–848, Vol. 2). Liberti, J., & Rappaport, T. (1996). A geometrically based model for line-of-sight multipath radio channels. In Vehicular technology conference (pp. 844–848, Vol. 2).
19.
Zurück zum Zitat Lin, C., & Li, G. Y. L. (2016). Terahertz communications: An array-of-subarrays solution. IEEE Communications Magazine, 54(12), 124–131.CrossRef Lin, C., & Li, G. Y. L. (2016). Terahertz communications: An array-of-subarrays solution. IEEE Communications Magazine, 54(12), 124–131.CrossRef
20.
Zurück zum Zitat Lin, J., & Weitnauer, M. (2014). Pulse-level beam-switching MAC with energy control in picocell terahertz networks. In Proceedings of IEEE GLOBECOM (pp. 4460–4465). Lin, J., & Weitnauer, M. (2014). Pulse-level beam-switching MAC with energy control in picocell terahertz networks. In Proceedings of IEEE GLOBECOM (pp. 4460–4465).
21.
Zurück zum Zitat Llatser, I., Cabellos-Aparicio, A., Alarcn, E., Jornet, J. M., Mestres, A., Lee, H., et al. (2015). Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale. IEEE Transactions on Communications, 63(1), 324–333. Llatser, I., Cabellos-Aparicio, A., Alarcn, E., Jornet, J. M., Mestres, A., Lee, H., et al. (2015). Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale. IEEE Transactions on Communications, 63(1), 324–333.
22.
Zurück zum Zitat Mudumbai, R., Singh, S., & Madhow, U. (2009). Medium access control for 60 GHz outdoor mesh networks with highly directional links. In INFOCOM 2009 (pp. 2871–2875). IEEE. Mudumbai, R., Singh, S., & Madhow, U. (2009). Medium access control for 60 GHz outdoor mesh networks with highly directional links. In INFOCOM 2009 (pp. 2871–2875). IEEE.
23.
Zurück zum Zitat Ning, J., Kim, T. S., Krishnamurthy, S. V., & Cordeiro, C. (2011). Directional neighbor discovery in 60 GHz indoor wireless networks. Performance Evaluation, 68(9), 897–915.CrossRef Ning, J., Kim, T. S., Krishnamurthy, S. V., & Cordeiro, C. (2011). Directional neighbor discovery in 60 GHz indoor wireless networks. Performance Evaluation, 68(9), 897–915.CrossRef
24.
Zurück zum Zitat Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015a). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks, 21(8), 2657–2676.CrossRef Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015a). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks, 21(8), 2657–2676.CrossRef
25.
Zurück zum Zitat Niu, Y., Li, Y., Jin, D., Su, L., & Wu, D. (2015b). Blockage robust and efficient scheduling for directional mmWave WPANs. IEEE Transactions on Vehicular Technology, 64(2), 728–742.CrossRef Niu, Y., Li, Y., Jin, D., Su, L., & Wu, D. (2015b). Blockage robust and efficient scheduling for directional mmWave WPANs. IEEE Transactions on Vehicular Technology, 64(2), 728–742.CrossRef
26.
Zurück zum Zitat Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., & Kurner, T. (2005). Terahertz characterisation of building materials. Electronics Letters, 41(18), 1002–1004.CrossRef Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., & Kurner, T. (2005). Terahertz characterisation of building materials. Electronics Letters, 41(18), 1002–1004.CrossRef
27.
Zurück zum Zitat Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., Schoebel, J., et al. (2007). Short-range ultra-broadband terahertz communications: Concepts and perspectives. IEEE Antennas and Propagation Magazine, 49(6), 24–39.CrossRef Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., Schoebel, J., et al. (2007). Short-range ultra-broadband terahertz communications: Concepts and perspectives. IEEE Antennas and Propagation Magazine, 49(6), 24–39.CrossRef
28.
Zurück zum Zitat Ramanathan, R., Redi, J., Santivanez, C., Wiggins, D., & Polit, S. (2005). Ad hoc networking with directional antennas: A complete system solution. IEEE Journal on Selected Areas in Communications, 23(3), 496–506.CrossRef Ramanathan, R., Redi, J., Santivanez, C., Wiggins, D., & Polit, S. (2005). Ad hoc networking with directional antennas: A complete system solution. IEEE Journal on Selected Areas in Communications, 23(3), 496–506.CrossRef
29.
Zurück zum Zitat Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029–3056.CrossRef Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029–3056.CrossRef
30.
Zurück zum Zitat Roh, W., Seol, J. Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.CrossRef Roh, W., Seol, J. Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.CrossRef
31.
Zurück zum Zitat Singh, S., Ziliotto, F., Madhow, U., Belding, E., & Rodwell, M. (2009). Blockage and directivity in 60 GHz wireless personal area networks: From cross-layer model to multihop MAC design. IEEE Journal on Selected Areas in Communications, 27(8), 1400–1413.CrossRef Singh, S., Ziliotto, F., Madhow, U., Belding, E., & Rodwell, M. (2009). Blockage and directivity in 60 GHz wireless personal area networks: From cross-layer model to multihop MAC design. IEEE Journal on Selected Areas in Communications, 27(8), 1400–1413.CrossRef
32.
Zurück zum Zitat Tamagnone, M., Gomez-Diaz, J., Mosig, J. R., & Perruisseau-Carrier, J. (2012). Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Applied Physics Letters, 101(21), 214102.CrossRef Tamagnone, M., Gomez-Diaz, J., Mosig, J. R., & Perruisseau-Carrier, J. (2012). Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Applied Physics Letters, 101(21), 214102.CrossRef
33.
Zurück zum Zitat Vicarelli, L., Vitiello, M., Coquillat, D., Lombardo, A., Ferrari, A., Knap, W., et al. (2012). Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 11(10), 865–871.CrossRef Vicarelli, L., Vitiello, M., Coquillat, D., Lombardo, A., Ferrari, A., Knap, W., et al. (2012). Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 11(10), 865–871.CrossRef
34.
Zurück zum Zitat Vien, Q. T., Agyeman, M. O., Le ,T. A., & Mak, T. (2017). On the nanocommunications at THz band in graphene-enabled wireless network-on-chip. Mathematical Problems in Engineering (Article ID 9768604). Vien, Q. T., Agyeman, M. O., Le ,T. A., & Mak, T. (2017). On the nanocommunications at THz band in graphene-enabled wireless network-on-chip. Mathematical Problems in Engineering (Article ID 9768604).
35.
Zurück zum Zitat Yildirim, F., & Liu, H. (2009). A cross-layer neighbor-discovery algorithm for directional 60-GHz networks. IEEE Transactions on Vehicular Technology, 58(8), 4598–4604.CrossRef Yildirim, F., & Liu, H. (2009). A cross-layer neighbor-discovery algorithm for directional 60-GHz networks. IEEE Transactions on Vehicular Technology, 58(8), 4598–4604.CrossRef
36.
Zurück zum Zitat Yiu, C., & Singh, S. (2009). Empirical capacity of mmWave WLANs. IEEE Journal on Selected Areas in Communications, 27(8), 1479–1487.CrossRef Yiu, C., & Singh, S. (2009). Empirical capacity of mmWave WLANs. IEEE Journal on Selected Areas in Communications, 27(8), 1479–1487.CrossRef
37.
Zurück zum Zitat Yu, Y. J., Zhao, Y., Ryu, S., Brus, L. E., Kim, K. S., & Kim, P. (2009). Tuning the graphene work function by electric field effect. Nano Letters, 9(10), 3430–3434.CrossRef Yu, Y. J., Zhao, Y., Ryu, S., Brus, L. E., Kim, K. S., & Kim, P. (2009). Tuning the graphene work function by electric field effect. Nano Letters, 9(10), 3430–3434.CrossRef
38.
Zurück zum Zitat Zhang, X., Zhou, S., Wang, X., Niu, Z., Lin, X., Zhu, D., et al. (2012). Improving network throughput in 60 GHz WLANs via multi-AP diversity. In 2012 IEEE International Conference on Communications (ICC) (pp. 4803–4807). IEEE. Zhang, X., Zhou, S., Wang, X., Niu, Z., Lin, X., Zhu, D., et al. (2012). Improving network throughput in 60 GHz WLANs via multi-AP diversity. In 2012 IEEE International Conference on Communications (ICC) (pp. 4803–4807). IEEE.
Metadaten
Titel
Pulse-level beam-switching for terahertz networks
verfasst von
Jian Lin
Mary Ann Weitnauer
Publikationsdatum
09.03.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1702-7

Weitere Artikel der Ausgabe 6/2019

Wireless Networks 6/2019 Zur Ausgabe

Neuer Inhalt