Skip to main content
Erschienen in: Acta Mechanica 12/2019

14.08.2019 | Original Paper

Pure bending of a piezoelectric layer in second gradient electroelasticity theory

verfasst von: Yury Solyaev, Sergey Lurie

Erschienen in: Acta Mechanica | Ausgabe 12/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The semi-inverse analytical solution of a pure bending problem for a piezoelectric layer is developed in the framework of linear electroelasticity theory with strain gradient and electric field gradient effects. The simplified gradient theory of transversely isotropic material with a single additional length scale parameter is considered. A two-dimensional solution is derived assuming plane strain state of a layer (cylindrical bending of a plate) and low dielectric properties of the surrounding medium. The electromechanical response of a layer is found under conditions of prescribed bending moments at the end faces. Boundary conditions on the top and bottom surfaces of a layer are satisfied exactly. The analytical solution is validated based on numerical finite element modeling. It is shown that the obtained solutions can be used for the validation of size-dependent beam and plate models in the second gradient electroelasticity theory.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Majdoub, M., Sharma, P., Çağin, T.: Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures. Phys. Rev. B 78(12), 121407 (2008)CrossRef Majdoub, M., Sharma, P., Çağin, T.: Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures. Phys. Rev. B 78(12), 121407 (2008)CrossRef
8.
Zurück zum Zitat Mindlin, R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4(6), 637–642 (1968)MATHCrossRef Mindlin, R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4(6), 637–642 (1968)MATHCrossRef
9.
Zurück zum Zitat Sahin, E., Dost, S.: A strain-gradients theory of elastic dielectrics with spatial dispersion. Int. J. Eng. Sci. 26(12), 1231–1245 (1988)CrossRef Sahin, E., Dost, S.: A strain-gradients theory of elastic dielectrics with spatial dispersion. Int. J. Eng. Sci. 26(12), 1231–1245 (1988)CrossRef
10.
Zurück zum Zitat Kafadar, C.B.: The theory of multipoles in classical electromagnetism. Int. J. Eng. Sci. 9(9), 831–853 (1971)MATHCrossRef Kafadar, C.B.: The theory of multipoles in classical electromagnetism. Int. J. Eng. Sci. 9(9), 831–853 (1971)MATHCrossRef
18.
Zurück zum Zitat Liang, X., Hu, S., Shen, S.: Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater. Struct. 23(3), 035020 (2014)CrossRef Liang, X., Hu, S., Shen, S.: Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater. Struct. 23(3), 035020 (2014)CrossRef
19.
Zurück zum Zitat Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58(5), 665–677 (2010)MathSciNetMATHCrossRef Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58(5), 665–677 (2010)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM J. Appl. Math. 94(10), 878–892 (2014)MathSciNetMATHCrossRef Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM J. Appl. Math. 94(10), 878–892 (2014)MathSciNetMATHCrossRef
22.
Zurück zum Zitat Liang, X., Hu, S., Shen, S.: Bernoulli-euler dielectric beam model based on strain-gradient effect. J. Appl. Mech. 80(4), 044502 (2013)CrossRef Liang, X., Hu, S., Shen, S.: Bernoulli-euler dielectric beam model based on strain-gradient effect. J. Appl. Mech. 80(4), 044502 (2013)CrossRef
23.
Zurück zum Zitat Wang, K., Wang, B.: Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization. Nanotechnology 29(25), 255405 (2018)CrossRef Wang, K., Wang, B.: Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization. Nanotechnology 29(25), 255405 (2018)CrossRef
24.
Zurück zum Zitat Yue, Y., Xu, K., Aifantis, E.C.: Strain gradient and electric field gradient effects in piezoelectric cantilever beams. J. Mech. Behav. Mater. 24(3–4), 121–127 (2015) Yue, Y., Xu, K., Aifantis, E.C.: Strain gradient and electric field gradient effects in piezoelectric cantilever beams. J. Mech. Behav. Mater. 24(3–4), 121–127 (2015)
25.
Zurück zum Zitat Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226(9), 3097–3110 (2015)MathSciNetMATHCrossRef Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226(9), 3097–3110 (2015)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Lurie, A., Belyaev, A.: Theory of elasticity. Foundations of engineering mechanics. Springer, Berlin (2005). 10(1007):978–983CrossRef Lurie, A., Belyaev, A.: Theory of elasticity. Foundations of engineering mechanics. Springer, Berlin (2005). 10(1007):978–983CrossRef
30.
Zurück zum Zitat Dell’Isola, F., Rosa, L.: Saint Venant problem in linear piezoelectricity. In smart structures and materials 1996: mathematics and control in smart structures. SPIE 2715(2), 399–410 (1996) Dell’Isola, F., Rosa, L.: Saint Venant problem in linear piezoelectricity. In smart structures and materials 1996: mathematics and control in smart structures. SPIE 2715(2), 399–410 (1996)
31.
33.
Zurück zum Zitat Batra, R.C., Dell’Isola, F., Ruta, G.C.: Second-order solution of Saint-Venant’s problem for an elastic bar predeformed in flexure. Int. J. Non-Linear Mech. 40(2–3), 411–422 (2005)MathSciNetMATHCrossRef Batra, R.C., Dell’Isola, F., Ruta, G.C.: Second-order solution of Saint-Venant’s problem for an elastic bar predeformed in flexure. Int. J. Non-Linear Mech. 40(2–3), 411–422 (2005)MathSciNetMATHCrossRef
39.
Zurück zum Zitat Ieşan, D.: On Saint-Venant’s problem in micropolar elasticity. Int. J. Eng. Sci. 9(10), 879–888 (1971)MATHCrossRef Ieşan, D.: On Saint-Venant’s problem in micropolar elasticity. Int. J. Eng. Sci. 9(10), 879–888 (1971)MATHCrossRef
40.
Zurück zum Zitat Reddy, G.K., Venkatasubramanian, N.: On the flexural rigidity of a micropolar elastic circular cylinder. J. Appl. Mech. 45(2), 429–431 (1978)CrossRef Reddy, G.K., Venkatasubramanian, N.: On the flexural rigidity of a micropolar elastic circular cylinder. J. Appl. Mech. 45(2), 429–431 (1978)CrossRef
41.
44.
Zurück zum Zitat Mindlin, R.D., Eshel, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)MATHCrossRef Mindlin, R.D., Eshel, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)MATHCrossRef
45.
Zurück zum Zitat Placidi, L., El Dhaba, A.R.: Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math. Mech. Solids 22(5), 919–937 (2017)MathSciNetMATHCrossRef Placidi, L., El Dhaba, A.R.: Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math. Mech. Solids 22(5), 919–937 (2017)MathSciNetMATHCrossRef
46.
Zurück zum Zitat Placidi, L., Barchiesi, E., Battista, A.: An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In: Mathematical Modelling in Solid Mechanics, pp. 193–210. Springer (2017) Placidi, L., Barchiesi, E., Battista, A.: An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In: Mathematical Modelling in Solid Mechanics, pp. 193–210. Springer (2017)
48.
Zurück zum Zitat Hu, S., Shen, S.: Electric field gradient theory with surface effect for nano-dielectrics. Comput. Mater. Continua 13(1), 63 (2009) Hu, S., Shen, S.: Electric field gradient theory with surface effect for nano-dielectrics. Comput. Mater. Continua 13(1), 63 (2009)
52.
Zurück zum Zitat Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)CrossRef Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)CrossRef
53.
Zurück zum Zitat Park, S., Gao, X.: Bernoulli-euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355 (2006)CrossRef Park, S., Gao, X.: Bernoulli-euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355 (2006)CrossRef
54.
Zurück zum Zitat Eremeyev, V.A., Dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132, 1–22 (2017)MathSciNetMATH Eremeyev, V.A., Dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132, 1–22 (2017)MathSciNetMATH
55.
Zurück zum Zitat Parton, V., Kudryavtsev, B.: Electromagnetoelasticity. Gordon and Breach Science Publishers, New York (1988). 90,059–0 Parton, V., Kudryavtsev, B.: Electromagnetoelasticity. Gordon and Breach Science Publishers, New York (1988). 90,059–0
57.
Zurück zum Zitat Polizzotto, C.: A gradient elasticity theory for second-grade materials and higher order inertia. Int. J. Solids Struct. 49(15–16), 2121–2137 (2012)CrossRef Polizzotto, C.: A gradient elasticity theory for second-grade materials and higher order inertia. Int. J. Solids Struct. 49(15–16), 2121–2137 (2012)CrossRef
58.
Zurück zum Zitat Lurie, S., Solyaev, Y., Volkov, A., Volkov-Bogorodskiy, D.: Bending problems in the theory of elastic materials with voids and surface effects. Math. Mech. Solids 23(5), 787–804 (2018)MathSciNetMATHCrossRef Lurie, S., Solyaev, Y., Volkov, A., Volkov-Bogorodskiy, D.: Bending problems in the theory of elastic materials with voids and surface effects. Math. Mech. Solids 23(5), 787–804 (2018)MathSciNetMATHCrossRef
59.
61.
Zurück zum Zitat Lurie, S., Solyaev, Y., Shramko, K.: Comparison between the Mori-Tanaka and generalized self-consistent methods in the framework of anti-plane strain inclusion problem in strain gradient elasticity. Mech. Mater. 122, 133–144 (2018)CrossRef Lurie, S., Solyaev, Y., Shramko, K.: Comparison between the Mori-Tanaka and generalized self-consistent methods in the framework of anti-plane strain inclusion problem in strain gradient elasticity. Mech. Mater. 122, 133–144 (2018)CrossRef
62.
Zurück zum Zitat Reiher, J.C., Giorgio, I., Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143(2), 04016112 (2016)CrossRef Reiher, J.C., Giorgio, I., Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143(2), 04016112 (2016)CrossRef
63.
Zurück zum Zitat Mitchell, J., Reddy, J.: A refined hybrid plate theory for composite laminates with piezoelectric laminae. Int. J. Solids Struct. 32(16), 2345–2367 (1995)MATHCrossRef Mitchell, J., Reddy, J.: A refined hybrid plate theory for composite laminates with piezoelectric laminae. Int. J. Solids Struct. 32(16), 2345–2367 (1995)MATHCrossRef
64.
Zurück zum Zitat Dell’Isola, F., Rosa, L.: Almansi-type boundary conditions for electric potential inducing flexure in linear piezoelectric beams. Continuum Mech. Thermodyn. 9(2), 115–125 (1997)MathSciNetMATHCrossRef Dell’Isola, F., Rosa, L.: Almansi-type boundary conditions for electric potential inducing flexure in linear piezoelectric beams. Continuum Mech. Thermodyn. 9(2), 115–125 (1997)MathSciNetMATHCrossRef
65.
Zurück zum Zitat Chróścielewski, J., Schmidt, R., Eremeyev, V.A.: Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches. Continuum Mech. Thermodyn. 31(1), 147–188 (2019)MathSciNetCrossRef Chróścielewski, J., Schmidt, R., Eremeyev, V.A.: Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches. Continuum Mech. Thermodyn. 31(1), 147–188 (2019)MathSciNetCrossRef
66.
Zurück zum Zitat Abo-el nour, N., Hamdan, A.M., Giorgio, I., Del Vescovo, D.: The mathematical model of reflection and refraction of longitudinal waves in thermo-piezoelectric materials. Arch. Appl. Mech. 84(9–11), 1229–1248 (2014)MATH Abo-el nour, N., Hamdan, A.M., Giorgio, I., Del Vescovo, D.: The mathematical model of reflection and refraction of longitudinal waves in thermo-piezoelectric materials. Arch. Appl. Mech. 84(9–11), 1229–1248 (2014)MATH
67.
Zurück zum Zitat Rosi, G., Pouget, J., Dell’Isola, F.: Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. Eur. J. Mech. A/Solids 29(5), 859–870 (2010)MathSciNetCrossRef Rosi, G., Pouget, J., Dell’Isola, F.: Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. Eur. J. Mech. A/Solids 29(5), 859–870 (2010)MathSciNetCrossRef
68.
Zurück zum Zitat Abd-alla, AenN, Alshaikh, F., Del Vescovo, D., Spagnuolo, M.: Plane waves and eigenfrequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity. J. Therm. Stresses 40(9), 1079–1092 (2017)CrossRef Abd-alla, AenN, Alshaikh, F., Del Vescovo, D., Spagnuolo, M.: Plane waves and eigenfrequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity. J. Therm. Stresses 40(9), 1079–1092 (2017)CrossRef
69.
Zurück zum Zitat Turco, E.: Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives. Eur. J. Environ. Civ. Eng. 21(5), 509–554 (2017)MathSciNetCrossRef Turco, E.: Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives. Eur. J. Environ. Civ. Eng. 21(5), 509–554 (2017)MathSciNetCrossRef
70.
Zurück zum Zitat Andreaus, U., Dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)MathSciNetMATHCrossRef Andreaus, U., Dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)MathSciNetMATHCrossRef
Metadaten
Titel
Pure bending of a piezoelectric layer in second gradient electroelasticity theory
verfasst von
Yury Solyaev
Sergey Lurie
Publikationsdatum
14.08.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 12/2019
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02484-x

Weitere Artikel der Ausgabe 12/2019

Acta Mechanica 12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.