Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

13.02.2020 | Original Article

Purities prediction in a manufacturing froth flotation plant: the deep learning techniques

Zeitschrift:
Neural Computing and Applications
Autoren:
Yuanyuan Pu, Alicja Szmigiel, Derek B. Apel
Wichtige Hinweise
Yuanyuan Pu and Alicja Szmigiel have contributed equally to this work.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Accurate and timely investigation to concentrate grade and recovery is a premise of realizing automation control in a froth flotation process. This study seeks to use deep learning technologies modeling a manufacturing flotation process, forecasting the concentrate purities for iron and the waste silica. Considering the size and temporality of engineering data, we adopted a long short-term memory to form the core part of the deep learning model. To perform this process, 23 variables reflecting a flotation plant were monitored and collected hourly over a half year time span, then wrangled, split, and restructured for deep learning model use. A deep learning model encompassing a stacked long short-term memory architecture was designed, trained, and tested with prepared data. The model’s performance on test data demonstrates the capability of our proposed model to predict real-time concentrate purities for iron and silica. Compared with a traditional machine model typified by a random forest model in this study, the proposed deep learning model is significantly more competent to model a manufacturing froth flotation process. Expected to lay a foundation for realizing automation control of the flotation process, this study should encourage deep learning in mineral processing engineering.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise