Skip to main content

2024 | OriginalPaper | Buchkapitel

QMC Strength for Some Random Configurations on the Sphere

verfasst von : Víctor de la Torre, Jordi Marzo

Erschienen in: Monte Carlo and Quasi-Monte Carlo Methods

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A sequence \((X_N)\subset \mathbb {S}^d\) of N-point sets from the d-dimensional sphere has QMC strength \(s^*>d/2\) if it has worst-case error of optimal order, \(N^{-s/d},\) for Sobolev spaces of order s for all \(d/2<s<s^*,\) and the order is not optimal for \(s> s^*.\) In [15] conjectured values of the strength are given for some well known point families in \(\mathbb S^2\) based on numerical results. We study the average QMC strength for some related random configurations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alishashi, K., Zamani, M.S.: The spherical ensemble and uniform distribution of points on the sphere. Electron. J. Probab. 20(23) (2015) Alishashi, K., Zamani, M.S.: The spherical ensemble and uniform distribution of points on the sphere. Electron. J. Probab. 20(23) (2015)
2.
Zurück zum Zitat Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge (2010) Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge (2010)
3.
Zurück zum Zitat Armentano, D., Beltrán, C., Shub, M.: Minimizing the discrete logarithmic energy on the sphere: the role of random polynomials. Trans. Am. Math. Soc. 363(6), 2955–2965 (2011)MathSciNetCrossRef Armentano, D., Beltrán, C., Shub, M.: Minimizing the discrete logarithmic energy on the sphere: the role of random polynomials. Trans. Am. Math. Soc. 363(6), 2955–2965 (2011)MathSciNetCrossRef
4.
Zurück zum Zitat Beltrán, C., Marzo, J., Ortega-Cerdà, J.: Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres. J. Complex. 37, 76–109 (2016)MathSciNetCrossRef Beltrán, C., Marzo, J., Ortega-Cerdà, J.: Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres. J. Complex. 37, 76–109 (2016)MathSciNetCrossRef
5.
Zurück zum Zitat Berman, R.J.: The spherical ensemble and quasi-Monte-Carlo designs. Constr. Approx. (2023) Berman, R.J.: The spherical ensemble and quasi-Monte-Carlo designs. Constr. Approx. (2023)
6.
Zurück zum Zitat Berman, R.J., Boucksom, S., Nyström, D.W.: Fekete points and convergence towards equilibrium measures on complex manifolds. Acta Math. 207, 1–27 (2011)MathSciNetCrossRef Berman, R.J., Boucksom, S., Nyström, D.W.: Fekete points and convergence towards equilibrium measures on complex manifolds. Acta Math. 207, 1–27 (2011)MathSciNetCrossRef
7.
Zurück zum Zitat Bogomolny, E., Bohigas, O., Leboeuf, P.: Distribution of roots of random polynomials. Phys. Rev. Lett. 68, 2726–2729 (1992)MathSciNetCrossRef Bogomolny, E., Bohigas, O., Leboeuf, P.: Distribution of roots of random polynomials. Phys. Rev. Lett. 68, 2726–2729 (1992)MathSciNetCrossRef
8.
Zurück zum Zitat Bogomolny, E., Bohigas, O., Leboeuf, P.: Quantum chaotic dynamics and random polynomials. J. Stat. Phys. 85(5), 639–679 (1996)MathSciNetCrossRef Bogomolny, E., Bohigas, O., Leboeuf, P.: Quantum chaotic dynamics and random polynomials. J. Stat. Phys. 85(5), 639–679 (1996)MathSciNetCrossRef
9.
Zurück zum Zitat Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical designs. Ann. Math. 178(2), 443–452 (2013)MathSciNetCrossRef Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical designs. Ann. Math. 178(2), 443–452 (2013)MathSciNetCrossRef
10.
Zurück zum Zitat Borda, B., Grabner, P., Matzke, R.W.: Riesz energy, \(L^2\) discrepancy, and Optimal transport of determinantal point processes on the sphere and the flat torus (2023). arXiv:2308.06216 Borda, B., Grabner, P., Matzke, R.W.: Riesz energy, \(L^2\) discrepancy, and Optimal transport of determinantal point processes on the sphere and the flat torus (2023). arXiv:​2308.​06216
11.
Zurück zum Zitat Borodachov, S., Hardin, D., Saff, E.: Discrete Energy on Rectifiable Sets. Springer, New York (2019)CrossRef Borodachov, S., Hardin, D., Saff, E.: Discrete Energy on Rectifiable Sets. Springer, New York (2019)CrossRef
12.
Zurück zum Zitat Brandolini, L., Choirat, C., Colzani, L., Gigante, G., Seri, R., Travaglini, G.: Quadrature rules and distribution of points on manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 889–923 (2014) Brandolini, L., Choirat, C., Colzani, L., Gigante, G., Seri, R., Travaglini, G.: Quadrature rules and distribution of points on manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 889–923 (2014)
13.
Zurück zum Zitat Brauchart, J.S., Dick, J.: A characterization of Sobolev spaces on the sphere and an extension of Stolarsky’s invariance principle to arbitrary smoothness. Constr. Approx. 38(3), 397–445 (2013)MathSciNetCrossRef Brauchart, J.S., Dick, J.: A characterization of Sobolev spaces on the sphere and an extension of Stolarsky’s invariance principle to arbitrary smoothness. Constr. Approx. 38(3), 397–445 (2013)MathSciNetCrossRef
14.
Zurück zum Zitat Brauchart, J.S., Hesse, K.: Numerical integration over spheres of arbitrary dimension. Constr. Approx. 25(1), 41–71 (2007)MathSciNetCrossRef Brauchart, J.S., Hesse, K.: Numerical integration over spheres of arbitrary dimension. Constr. Approx. 25(1), 41–71 (2007)MathSciNetCrossRef
15.
Zurück zum Zitat Brauchart, J.S., Saff, E.B., Sloan, I.H., Womersley, R.S.: QMC designs: optimal order quasi Monte Carlo integration schemes on the sphere. Math. Comput. 83(290), 2821–2851 (2014)MathSciNetCrossRef Brauchart, J.S., Saff, E.B., Sloan, I.H., Womersley, R.S.: QMC designs: optimal order quasi Monte Carlo integration schemes on the sphere. Math. Comput. 83(290), 2821–2851 (2014)MathSciNetCrossRef
16.
Zurück zum Zitat Brauchart, J.S., Grabner, P.J., Kusner, W., Ziefle, J.: Hyperuniform point sets on the sphere: probabilistic aspects. Monatsh. Math. 192, 763–781 (2020)MathSciNetCrossRef Brauchart, J.S., Grabner, P.J., Kusner, W., Ziefle, J.: Hyperuniform point sets on the sphere: probabilistic aspects. Monatsh. Math. 192, 763–781 (2020)MathSciNetCrossRef
19.
Zurück zum Zitat Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, vol. II. McGraw-Hill Book Company Inc, New York-Toronto-London (1954) Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, vol. II. McGraw-Hill Book Company Inc, New York-Toronto-London (1954)
20.
Zurück zum Zitat Hesse, K.: A lower bound for the worst-case cubature error on spheres of arbitrary dimen-sion. Numer. Math. 103(3), 413–433 (2006)MathSciNetCrossRef Hesse, K.: A lower bound for the worst-case cubature error on spheres of arbitrary dimen-sion. Numer. Math. 103(3), 413–433 (2006)MathSciNetCrossRef
21.
Zurück zum Zitat Hesse, K., Sloan, I.H.: Optimal lower bounds for cubature error on the sphere \(\mathbb{S} ^2\). J. Complex. 21(6), 790–803 (2005)CrossRef Hesse, K., Sloan, I.H.: Optimal lower bounds for cubature error on the sphere \(\mathbb{S} ^2\). J. Complex. 21(6), 790–803 (2005)CrossRef
22.
Zurück zum Zitat Hirao, M.: QMC designs and determinantal point processes. In: Monte Carlo and quasi-Monte Carlo methods. Springer Proceedings in Mathematics and Statistics, vol. 241, pp. 331–343. Springer, Cham (2018) Hirao, M.: QMC designs and determinantal point processes. In: Monte Carlo and quasi-Monte Carlo methods. Springer Proceedings in Mathematics and Statistics, vol. 241, pp. 331–343. Springer, Cham (2018)
23.
Zurück zum Zitat Ben Hough, J., Krishnapur, M., Peres, Y., Virág, V.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, Providence, RI (2009) Ben Hough, J., Krishnapur, M., Peres, Y., Virág, V.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, Providence, RI (2009)
24.
25.
26.
Zurück zum Zitat Marzo, J., Ortega-Cerdà, J.: Equidistribution of the Fekete points on the sphere. Constr. Approx. 32(3), 513–521 (2010)MathSciNetCrossRef Marzo, J., Ortega-Cerdà, J.: Equidistribution of the Fekete points on the sphere. Constr. Approx. 32(3), 513–521 (2010)MathSciNetCrossRef
27.
Zurück zum Zitat Pemantle, R., Peres, Y.: Concentration of Lipschitz functionals of determinantal and other strong Rayleigh measures. Comb. Probab. Comput. 23(1), 140–160 (2014)MathSciNetCrossRef Pemantle, R., Peres, Y.: Concentration of Lipschitz functionals of determinantal and other strong Rayleigh measures. Comb. Probab. Comput. 23(1), 140–160 (2014)MathSciNetCrossRef
28.
Zurück zum Zitat Reimer, M.: Multivariate Polynomial Approximation, vol. 144. Springer (2003) Reimer, M.: Multivariate Polynomial Approximation, vol. 144. Springer (2003)
29.
Zurück zum Zitat Sloan, I.H., Womersley, R.S.: How good can polynomial interpolation on the sphere be? Adv. Comput. Math. 14, 195–226 (2001)MathSciNetCrossRef Sloan, I.H., Womersley, R.S.: How good can polynomial interpolation on the sphere be? Adv. Comput. Math. 14, 195–226 (2001)MathSciNetCrossRef
30.
Zurück zum Zitat Smale, S., Shub, M.: Complexity of Bézout’s theorem III. Condition number and packing. J. Complex. 9(1), 4–14 (1993), Festschrift for Joseph F. Traub, Part I Smale, S., Shub, M.: Complexity of Bézout’s theorem III. Condition number and packing. J. Complex. 9(1), 4–14 (1993), Festschrift for Joseph F. Traub, Part I
31.
Zurück zum Zitat Szegö, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society, Colloquium Publications (1939) Szegö, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society, Colloquium Publications (1939)
Metadaten
Titel
QMC Strength for Some Random Configurations on the Sphere
verfasst von
Víctor de la Torre
Jordi Marzo
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_31