Skip to main content
Erschienen in:

01.04.2025

QoS-Aware cloud security using lightweight EfficientNet with Adaptive Sparse Bayesian Optimization

verfasst von: Vinothini J, Srie Vidhya Janani E

Erschienen in: Peer-to-Peer Networking and Applications | Ausgabe 2/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel untersucht die Herausforderungen der Echtzeit-Erkennung von Eindringlingen in Cloud-Umgebungen, in denen traditionelle Deep-Learning-Modelle mit hohen Rechenkosten und Latenzproblemen konfrontiert sind. Es stellt EfficientNet vor, ein leichtes Modell, das für die Feature-Extraktion optimiert ist, und Adaptive Sparse Bayesian Optimization (ASBO) für effiziente Hyperparametereinstellungen. Die Methode wird anhand von drei prominenten Datensätzen ausgewertet, die im Vergleich zu bestehenden Modellen eine höhere Genauigkeit und geringere falsch positive Raten aufweisen. Die Forschungsergebnisse unterstreichen die Fähigkeit des Modells, niedrige Latenz, hohe Bandbreiteneffizienz und schnelle Reaktionszeiten aufrechtzuerhalten, wodurch es sich für Echtzeit-Cloud-Sicherheitsanwendungen eignet. Die Ergebnisse zeigen signifikante Verbesserungen der QoS-Metriken und der Recheneffizienz, was das Potenzial des Modells für den praktischen Einsatz in dynamischen Cloud-Umgebungen unterstreicht.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bello SA et al (2020) Cloud computing in construction industry: use cases, benefits and challenges. Autom Constr 122(1):103441 Bello SA et al (2020) Cloud computing in construction industry: use cases, benefits and challenges. Autom Constr 122(1):103441
2.
Zurück zum Zitat Vahid G et al (2024) Cloud based manufacturing: a review of recent developments in architectures, technologies, infrastructures, platforms and associated challenges. Int J Adv Manuf Technol 131(1):93–123CrossRef Vahid G et al (2024) Cloud based manufacturing: a review of recent developments in architectures, technologies, infrastructures, platforms and associated challenges. Int J Adv Manuf Technol 131(1):93–123CrossRef
3.
Zurück zum Zitat Alhomdy S, Thabit F, Abdulrazzak FH, Haldorai A, Jagtap S (2021) The role of cloud computing technology: a savior to fight the lockdown in COVID 19 crisis, the benefits, characteristics and applications. Int J Intell Networks 2:166–174 Alhomdy S, Thabit F, Abdulrazzak FH, Haldorai A, Jagtap S (2021) The role of cloud computing technology: a savior to fight the lockdown in COVID 19 crisis, the benefits, characteristics and applications. Int J Intell Networks 2:166–174
4.
Zurück zum Zitat Hadwer A, Tavana M, Gillis D, Rezania D (2021) A systematic review of organizational factors impacting cloud-based technology adoption using technology-organization-environment framework. Internet Things 15:100407 Hadwer A, Tavana M, Gillis D, Rezania D (2021) A systematic review of organizational factors impacting cloud-based technology adoption using technology-organization-environment framework. Internet Things 15:100407
5.
Zurück zum Zitat Cresswell K, Domínguez Hernández A, Williams R, Sheikh A (2021) Key challenges and opportunities for cloud technology in health care. Semistructured interview study. JMIR Hum 9(1). https://doi.org/10.2196/31246 Cresswell K, Domínguez Hernández A, Williams R, Sheikh A (2021) Key challenges and opportunities for cloud technology in health care. Semistructured interview study. JMIR Hum 9(1). https://​doi.​org/​10.​2196/​31246
6.
Zurück zum Zitat Ali T, Al-Khalidi M, Al-Zaidi R (2024) Information security risk assessment methods in cloud computing: comprehensive review. J Comput Inf Syst, 1–28 Ali T, Al-Khalidi M, Al-Zaidi R (2024) Information security risk assessment methods in cloud computing: comprehensive review. J Comput Inf Syst, 1–28
7.
Zurück zum Zitat Maniah B, Soewito F, Lumban Gaol, Abdurachman E (2021) A systematic literature review: risk analysis in cloud migration. J King Saud Univ - Comput Inf Sci 34(6):3111–3120CrossRef Maniah B, Soewito F, Lumban Gaol, Abdurachman E (2021) A systematic literature review: risk analysis in cloud migration. J King Saud Univ - Comput Inf Sci 34(6):3111–3120CrossRef
8.
Zurück zum Zitat Kianpour M, Raza S (2024) More than malware: unmasking the hidden risk of cybersecurity regulations. Int Cybersecurity Law Rev 5(1):169–212CrossRef Kianpour M, Raza S (2024) More than malware: unmasking the hidden risk of cybersecurity regulations. Int Cybersecurity Law Rev 5(1):169–212CrossRef
9.
Zurück zum Zitat Abdulsalam YS, Hedabou M (2021) Security and privacy in Cloud Computing: Technical Review. Future Internet 14(1):11CrossRef Abdulsalam YS, Hedabou M (2021) Security and privacy in Cloud Computing: Technical Review. Future Internet 14(1):11CrossRef
10.
Zurück zum Zitat Lili N, Zlatolas T, Welzer, Lhotska L (2024) Data breaches in healthcare: security mechanisms for attack mitigation. Cluster computing Lili N, Zlatolas T, Welzer, Lhotska L (2024) Data breaches in healthcare: security mechanisms for attack mitigation. Cluster computing
11.
Zurück zum Zitat Cremer F et al (2022) Cyber risk and cybersecurity: a systematic review of data availability. Geneva Pap Risk Insur - Issues Pract 47(3):698 Cremer F et al (2022) Cyber risk and cybersecurity: a systematic review of data availability. Geneva Pap Risk Insur - Issues Pract 47(3):698
12.
Zurück zum Zitat Alawida M, Omolara AE, Abiodun OI, Al-Rajab M (2022) A deeper look into cybersecurity issues in the wake of Covid-19: A survey. J King Saud Univ - Comput Inf Sci 34(10):8176–8206 Alawida M, Omolara AE, Abiodun OI, Al-Rajab M (2022) A deeper look into cybersecurity issues in the wake of Covid-19: A survey. J King Saud Univ - Comput Inf Sci 34(10):8176–8206
13.
Zurück zum Zitat Alyazia Aldhaheri F, Alwahedi MA, Ferrag, Battah A (2024) Deep learning for cyber threat detection in IoT networks: a review. Internet Things Cyber-Physical Syst 4:110–128CrossRef Alyazia Aldhaheri F, Alwahedi MA, Ferrag, Battah A (2024) Deep learning for cyber threat detection in IoT networks: a review. Internet Things Cyber-Physical Syst 4:110–128CrossRef
14.
Zurück zum Zitat Wu Y, Wei D, Feng J (2020) Network attacks detection methods based on deep learning techniques: a survey. Secur Commun Netw, 1–17 Wu Y, Wei D, Feng J (2020) Network attacks detection methods based on deep learning techniques: a survey. Secur Commun Netw, 1–17
15.
Zurück zum Zitat Abbasi M, Shahraki A, Taherkordi A (2021) Deep Learning for Network Traffic Monitoring and Analysis (NTMA): a survey. Comput Commun 170:19–41CrossRef Abbasi M, Shahraki A, Taherkordi A (2021) Deep Learning for Network Traffic Monitoring and Analysis (NTMA): a survey. Comput Commun 170:19–41CrossRef
16.
Zurück zum Zitat Devendiran R, Turukmane AV (2024) Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy. Expert Syst Appl 245:123027–123027 Devendiran R, Turukmane AV (2024) Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy. Expert Syst Appl 245:123027–123027
17.
Zurück zum Zitat Raviprasad B, Mohan CR, Devi GNR, Pugalenthi R, Manikandan LC, Ponnusamy S (2022) Accuracy determination using deep learning technique in cloud-based IoT sensor environment. Meas: Sensors 24:100459 Raviprasad B, Mohan CR, Devi GNR, Pugalenthi R, Manikandan LC, Ponnusamy S (2022) Accuracy determination using deep learning technique in cloud-based IoT sensor environment. Meas: Sensors 24:100459
18.
Zurück zum Zitat Ugurlu M, Dogru IA (2019) A survey on deep learning based intrusion detection system. 4th International Conference on Computer Science and Engineering (UBMK) Ugurlu M, Dogru IA (2019) A survey on deep learning based intrusion detection system. 4th International Conference on Computer Science and Engineering (UBMK)
19.
Zurück zum Zitat Soltani M, Ousat B, Siavoshani MJ, Jahangir AH (2023) An adaptable deep learning-based intrusion detection system to zero-day attacks. J Inf Secur Appl 76:103516–103516 Soltani M, Ousat B, Siavoshani MJ, Jahangir AH (2023) An adaptable deep learning-based intrusion detection system to zero-day attacks. J Inf Secur Appl 76:103516–103516
20.
Zurück zum Zitat Khadka K, Chandrasekaran J, Lei Y, Kacker RN, Richard Kuhn D (2024) A combinatorial approach to hyperparameter optimization. 2024 IEEE/ACM 3rd International Conference on AI Engineering – Software Engineering for AI (CAIN), Lisbon, Portugal, pp 140–149 Khadka K, Chandrasekaran J, Lei Y, Kacker RN, Richard Kuhn D (2024) A combinatorial approach to hyperparameter optimization. 2024 IEEE/ACM 3rd International Conference on AI Engineering – Software Engineering for AI (CAIN), Lisbon, Portugal, pp 140–149
21.
Zurück zum Zitat Wu J, Chen X-Y, Zhang H, Xiong L-D, Lei H, Deng S-H (2019) Hyperparameter optimization for machine learning models based on bayesian optimizationb. J Electron Sci Technol 17(1):26–40 Wu J, Chen X-Y, Zhang H, Xiong L-D, Lei H, Deng S-H (2019) Hyperparameter optimization for machine learning models based on bayesian optimizationb. J Electron Sci Technol 17(1):26–40
22.
Zurück zum Zitat Sowmya T, Mary Anita EA (2023) A comprehensive review of AI based intrusion detection system, pp 100827–100827 Sowmya T, Mary Anita EA (2023) A comprehensive review of AI based intrusion detection system, pp 100827–100827
24.
Zurück zum Zitat Tabassum N, Reddyy CRK (2022) Review on QoS and security challenges associated with the internet of vehicles in cloud computing. Meas: Sensors 27:100562 Tabassum N, Reddyy CRK (2022) Review on QoS and security challenges associated with the internet of vehicles in cloud computing. Meas: Sensors 27:100562
25.
Zurück zum Zitat Khan A, Umar AI, Shirazi SH, Ishaq W, Shah M, Assam M, Mohamed A (2022) QoS-Aware cost minimization strategy for AMI applications in smart grid using cloud computing. Sensors 22(13):4969 Khan A, Umar AI, Shirazi SH, Ishaq W, Shah M, Assam M, Mohamed A (2022) QoS-Aware cost minimization strategy for AMI applications in smart grid using cloud computing. Sensors 22(13):4969
26.
Zurück zum Zitat Prasad VK, Dansana D, Bhavsar MD, Acharya B, Gerogiannis VC, Kanavos A (2023) Efficient resource utilization in IoT and cloud computing. Information 14(11):619 Prasad VK, Dansana D, Bhavsar MD, Acharya B, Gerogiannis VC, Kanavos A (2023) Efficient resource utilization in IoT and cloud computing. Information 14(11):619
27.
Zurück zum Zitat Aljuaid WH, Alshamrani SS (2024) A deep learning approach for intrusion detection systems in cloud computing environments. Appl Sci 14(13):5381CrossRef Aljuaid WH, Alshamrani SS (2024) A deep learning approach for intrusion detection systems in cloud computing environments. Appl Sci 14(13):5381CrossRef
28.
Zurück zum Zitat Balajee RM, Jayanthi Kannan MK (2023) Intrusion detection on AWS cloud through hybrid deep learning algorithm. Electronics 12(6):1423 Balajee RM, Jayanthi Kannan MK (2023) Intrusion detection on AWS cloud through hybrid deep learning algorithm. Electronics 12(6):1423
29.
Zurück zum Zitat Bhardwaj A, Mangat V, Vig R (2020) Hyperband tuned deep neural network with well posed stacked sparse AutoEncoder for detection of DDoS attacks in Cloud. IEEE Access 8:181916–181929CrossRef Bhardwaj A, Mangat V, Vig R (2020) Hyperband tuned deep neural network with well posed stacked sparse AutoEncoder for detection of DDoS attacks in Cloud. IEEE Access 8:181916–181929CrossRef
30.
Zurück zum Zitat Balasubramaniam S et al (2023) Optimization enabled deep learning-Based DDoS attack detection in cloud computing. Int J Intell Syst, e2039217 Balasubramaniam S et al (2023) Optimization enabled deep learning-Based DDoS attack detection in cloud computing. Int J Intell Syst, e2039217
32.
Zurück zum Zitat Singh P, Ranga V (2021) Attack and intrusion detection in cloud computing using an ensemble learning approach. Int J Inf Technol 13(2):565–571 Singh P, Ranga V (2021) Attack and intrusion detection in cloud computing using an ensemble learning approach. Int J Inf Technol 13(2):565–571
33.
Zurück zum Zitat Aldhyani THH, Alkahtani H (2022) Artificial Intelligence algorithm-Based economic denial of sustainability attack detection systems: cloud computing environments. Sensors 22(13):4685 Aldhyani THH, Alkahtani H (2022) Artificial Intelligence algorithm-Based economic denial of sustainability attack detection systems: cloud computing environments. Sensors 22(13):4685
34.
Zurück zum Zitat Ramachandran D, Albathan M, Hussain A, Abbas Q (2023) Enhancing cloud-based security: a novel approach for efficient cyber-threat detection using GSCSO-IHNN model. Systems 11(10):518–518 Ramachandran D, Albathan M, Hussain A, Abbas Q (2023) Enhancing cloud-based security: a novel approach for efficient cyber-threat detection using GSCSO-IHNN model. Systems 11(10):518–518
35.
Zurück zum Zitat Sreenivasa Chakravarthi S, Jagadeesh Kannan R, Anantha Natarajan V, Gao X-Z (2022) Deep learning based intrusion detection in cloud services for resilience management, computers, materials & continua/computers. Mater Continua (Print) 71(3):5117–5133 Sreenivasa Chakravarthi S, Jagadeesh Kannan R, Anantha Natarajan V, Gao X-Z (2022) Deep learning based intrusion detection in cloud services for resilience management, computers, materials & continua/computers. Mater Continua (Print) 71(3):5117–5133
36.
Zurück zum Zitat Kumar S, Dwivedi M, Kumar M, Gill SS (2024) A comprehensive review of vulnerabilities and AI-enabled defense against DDoS attacks for securing cloud services. Comput Sci Rev 53:100661–100661 Kumar S, Dwivedi M, Kumar M, Gill SS (2024) A comprehensive review of vulnerabilities and AI-enabled defense against DDoS attacks for securing cloud services. Comput Sci Rev 53:100661–100661
37.
Zurück zum Zitat Samriya JK, Chakraborty C, Sharma A, Kumar M, Ramakuri SK Adversarial ML-Based secured cloud architecture for consumer Internet of things of smart healthcare. IEEE Trans Consum Electron 70(1):2058–2065CrossRef Samriya JK, Chakraborty C, Sharma A, Kumar M, Ramakuri SK Adversarial ML-Based secured cloud architecture for consumer Internet of things of smart healthcare. IEEE Trans Consum Electron 70(1):2058–2065CrossRef
38.
Zurück zum Zitat Samriya JK, Kumar S, Kumar M, Wu H, Gill SS (2024) Machine learning based network intrusion detection optimization for cloud computing environments. IEEE Trans Consum Electron, pp 1–1 Samriya JK, Kumar S, Kumar M, Wu H, Gill SS (2024) Machine learning based network intrusion detection optimization for cloud computing environments. IEEE Trans Consum Electron, pp 1–1
39.
Zurück zum Zitat Suman OP, Kumar M (2023) Machine learning based theoretical and experimental analysis of DDoS attacks in cloud computing. 2023 International Conference on Device Intelligence, Computing and Communication Technologies, (DICCT), Dehradun, India, pp 526–531 Suman OP, Kumar M (2023) Machine learning based theoretical and experimental analysis of DDoS attacks in cloud computing. 2023 International Conference on Device Intelligence, Computing and Communication Technologies, (DICCT), Dehradun, India, pp 526–531
40.
Zurück zum Zitat Kilichev D, Kim W (2023) Hyperparameter optimization for 1D-CNN-Based Network Intrusion Detection Using GA and PSO. Mathematics 11(17):3724CrossRef Kilichev D, Kim W (2023) Hyperparameter optimization for 1D-CNN-Based Network Intrusion Detection Using GA and PSO. Mathematics 11(17):3724CrossRef
42.
Zurück zum Zitat Bischl B, Binder M, Lang M, Pielok T, Richter J, Coors S, Thomas J, Ullmann T, Becker M, Boulesteix A-L, Deng D, Lindauer M (2023) Hyperparameter optimization: foundations, algorithms, best practices, and open challenges. WIREs Data Min Knowl Discov 13(2):e1484 Bischl B, Binder M, Lang M, Pielok T, Richter J, Coors S, Thomas J, Ullmann T, Becker M, Boulesteix A-L, Deng D, Lindauer M (2023) Hyperparameter optimization: foundations, algorithms, best practices, and open challenges. WIREs Data Min Knowl Discov 13(2):e1484
43.
Zurück zum Zitat Victoria AH, Maragatham G (May 2020) Automatic tuning of hyperparameters using bayesian optimization. Evolving Systems Victoria AH, Maragatham G (May 2020) Automatic tuning of hyperparameters using bayesian optimization. Evolving Systems
44.
Zurück zum Zitat Ippolito PP (2022) Hyperparameter tuning, pp 231–251 Ippolito PP (2022) Hyperparameter tuning, pp 231–251
45.
Zurück zum Zitat Azam M et al (2024) A systematic review of hyperparameter optimization techniques in Convolutional Neural Networks. Decis Anal J, 100470–100470 Azam M et al (2024) A systematic review of hyperparameter optimization techniques in Convolutional Neural Networks. Decis Anal J, 100470–100470
46.
Zurück zum Zitat Khatamsaz D, Neuberger R, Roy AM, Zadeh SH, Otis R, Arróyave R (2023) A physics informed Bayesian optimization approach for material design: application to NiTi shape memory alloys. NPJ Comput Mater 9(1):221 Khatamsaz D, Neuberger R, Roy AM, Zadeh SH, Otis R, Arróyave R (2023) A physics informed Bayesian optimization approach for material design: application to NiTi shape memory alloys. NPJ Comput Mater 9(1):221
47.
Zurück zum Zitat Tay T, Osorio C (2022) Bayesian optimization techniques for high-dimensional simulation-based transportation problems. Transp Res B: Methodol 164:210–243 Tay T, Osorio C (2022) Bayesian optimization techniques for high-dimensional simulation-based transportation problems. Transp Res B: Methodol 164:210–243
48.
Zurück zum Zitat Rapp F, Roth M (2024) Quantum Gaussian process regression for Bayesian optimization. Quantum Mach Intell 6(1):5 Rapp F, Roth M (2024) Quantum Gaussian process regression for Bayesian optimization. Quantum Mach Intell 6(1):5
49.
Zurück zum Zitat Bhavani Mallampati S, Hari S (2023) Fusion of feature ranking methods for an effective intrusion detection system. Computers Mater Continua 76(2):1721–1744CrossRef Bhavani Mallampati S, Hari S (2023) Fusion of feature ranking methods for an effective intrusion detection system. Computers Mater Continua 76(2):1721–1744CrossRef
50.
Zurück zum Zitat Leevy JL, Khoshgoftaar TM (2020) A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 big data. J Big Data 7(1) Leevy JL, Khoshgoftaar TM (2020) A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 big data. J Big Data 7(1)
Metadaten
Titel
QoS-Aware cloud security using lightweight EfficientNet with Adaptive Sparse Bayesian Optimization
verfasst von
Vinothini J
Srie Vidhya Janani E
Publikationsdatum
01.04.2025
Verlag
Springer US
Erschienen in
Peer-to-Peer Networking and Applications / Ausgabe 2/2025
Print ISSN: 1936-6442
Elektronische ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-024-01899-1