Skip to main content
Erschienen in:

06.05.2024

Qsmix: Q-learning-based task scheduling approach for mixed-critical applications on heterogeneous multi-cores

verfasst von: Fatemeh Afshari, Athena Abdi

Erschienen in: The Journal of Supercomputing | Ausgabe 12/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a Q-learning-based task scheduling approach for mixed-critical application on heterogeneous multi-cores (QSMix) to optimize their main design challenges is proposed. This approach employs reinforcement learning capabilities to optimize execution time, power consumption, reliability and temperature of the heterogeneous multi-cores during task scheduling process. In QSMix, a reward function is defined to consider all target design parameters simultaneously and is tuned based on applying punishment for unwanted conditions during the learning. The learning process of QSMix is led by utilizing the defined reward function during constructing the Q-table for various execution scenarios. Afterward, the best solution is selected from the constructed Q-table based on the system’s policy to achieve a near-optimal solution that meets the existing trade-offs among objectives while considering its constraints properly. To evaluate our proposed QSMix, several experiments are performed to show its effectiveness in finding appropriate solutions and its gradual behavior during learning process. Moreover, the performance of QSMix in terms of optimizing the target design parameters is compared to various related research. The results confirm that QSMix has average improvement about 9% over related studies in joint optimization of execution time, power consumption, reliability and temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Marwedel P (2021) Embedded system design: embedded systems foundations of cyber-physical systems, and the internet of things. Springer Nature Marwedel P (2021) Embedded system design: embedded systems foundations of cyber-physical systems, and the internet of things. Springer Nature
2.
Zurück zum Zitat Kathiresh M, Neelaveni R (2021) Automotive Embedded Systems. Springer Kathiresh M, Neelaveni R (2021) Automotive Embedded Systems. Springer
3.
Zurück zum Zitat Lee S, Lee SK, Lee SS (2021) Deadline-aware task scheduling for IoT applications in collaborative edge computing. IEEE Wirel Commun Lett 10(10):2175–2179 Lee S, Lee SK, Lee SS (2021) Deadline-aware task scheduling for IoT applications in collaborative edge computing. IEEE Wirel Commun Lett 10(10):2175–2179
4.
Zurück zum Zitat Ng CK, Vyas S, Cytron RK, Gill CD, Zambreno J, Jones PH (2013) Scheduling challenges in mixed critical real-time heterogeneous computing platforms. Proc Comput Sci 18:1891–1898 Ng CK, Vyas S, Cytron RK, Gill CD, Zambreno J, Jones PH (2013) Scheduling challenges in mixed critical real-time heterogeneous computing platforms. Proc Comput Sci 18:1891–1898
6.
Zurück zum Zitat Lattuada M, et al (2009) Performance modeling of parallel applications on MPSoCs. In: International Symposium on System-On-Chip. IEEE. pp 064–067 Lattuada M, et al (2009) Performance modeling of parallel applications on MPSoCs. In: International Symposium on System-On-Chip. IEEE. pp 064–067
7.
Zurück zum Zitat Thethi SK, Kumar R (2021) Dynamic frequency scaling for low-power operation of a single-core processor: a radial basis function approach. Arab J Sci Eng 46:119–4139 Thethi SK, Kumar R (2021) Dynamic frequency scaling for low-power operation of a single-core processor: a radial basis function approach. Arab J Sci Eng 46:119–4139
8.
Zurück zum Zitat Cotes-Ruiz IT, Prado RP, Garca-Galan S, Munoz-Exposito JE, Ruiz-Reyes N (2017) Dynamic voltage frequency scaling simulator for real workflows energy-aware management in green cloud computing. PloS one 12(1):0169803 Cotes-Ruiz IT, Prado RP, Garca-Galan S, Munoz-Exposito JE, Ruiz-Reyes N (2017) Dynamic voltage frequency scaling simulator for real workflows energy-aware management in green cloud computing. PloS one 12(1):0169803
10.
Zurück zum Zitat Le Sueur E, Heiser G (2010) Dynamic voltage and frequency scaling: the laws of diminishing returns. In: Proceedings of the 2010 International Conference on Power Aware Computing and Systems, pp 1–8 Le Sueur E, Heiser G (2010) Dynamic voltage and frequency scaling: the laws of diminishing returns. In: Proceedings of the 2010 International Conference on Power Aware Computing and Systems, pp 1–8
11.
Zurück zum Zitat Tabish R (2021) Next-generation safety-critical systems using COTS based homogeneous multi-core processors and heterogeneous MPSoCS. PhD thesis Tabish R (2021) Next-generation safety-critical systems using COTS based homogeneous multi-core processors and heterogeneous MPSoCS. PhD thesis
12.
Zurück zum Zitat Saponara S, Fanucci L (2012) Homogeneous and heterogeneous MPSoC architectures with network-on-chip connectivity for low-power and real-time multimedia signal processing. In: VLSI design 2012 Saponara S, Fanucci L (2012) Homogeneous and heterogeneous MPSoC architectures with network-on-chip connectivity for low-power and real-time multimedia signal processing. In: VLSI design 2012
13.
Zurück zum Zitat Jalier C, et al (2010) Heterogeneous vs homogeneous MPSoC approaches for a mobile LTE modem. In: 2010 Design, Automation and Test in Europe Conference and Exhibition (DATE 2010). IEEE. 2010: 184–189 Jalier C, et al (2010) Heterogeneous vs homogeneous MPSoC approaches for a mobile LTE modem. In: 2010 Design, Automation and Test in Europe Conference and Exhibition (DATE 2010). IEEE. 2010: 184–189
14.
Zurück zum Zitat Lee J, Kim M (2020) Generalized models of mixed-criticality systems for real-time scheduling. Trans Eng Comput Sci 1(1–50):51 Lee J, Kim M (2020) Generalized models of mixed-criticality systems for real-time scheduling. Trans Eng Comput Sci 1(1–50):51
15.
Zurück zum Zitat Giannopoulou Georgia et al (2016) Mixed-criticality scheduling on clusterbased manycores with shared communication and storage resources. Real Time Syst 52:399–449 Giannopoulou Georgia et al (2016) Mixed-criticality scheduling on clusterbased manycores with shared communication and storage resources. Real Time Syst 52:399–449
16.
Zurück zum Zitat Burns A, Davis RI (2017) A survey of research into mixed criticality systems. ACM Comput Surv (CSUR) 50(6):1–37 Burns A, Davis RI (2017) A survey of research into mixed criticality systems. ACM Comput Surv (CSUR) 50(6):1–37
18.
Zurück zum Zitat Arunarani AR, Manjula D, Sugumaran V (2019) Task scheduling techniques in cloud computing: a literature survey. Future Gener Comput Syst 91:407–415 Arunarani AR, Manjula D, Sugumaran V (2019) Task scheduling techniques in cloud computing: a literature survey. Future Gener Comput Syst 91:407–415
19.
Zurück zum Zitat Gokilavani M, Selvi S, Udhayakumar C (2013) A survey on resource allocation and task scheduling algorithms in cloud environment. In: ISO 9001, p 2008 Gokilavani M, Selvi S, Udhayakumar C (2013) A survey on resource allocation and task scheduling algorithms in cloud environment. In: ISO 9001, p 2008
20.
Zurück zum Zitat Ramamritham K, Stankovic JA (1994) Scheduling algorithms and operating systems support for real-time systems. Proc IEEE 82(1):55–67 Ramamritham K, Stankovic JA (1994) Scheduling algorithms and operating systems support for real-time systems. Proc IEEE 82(1):55–67
21.
Zurück zum Zitat Fohler G (2011) How different are offline and online scheduling? In: Gerhard Fohler, RTSOPS Fohler G (2011) How different are offline and online scheduling? In: Gerhard Fohler, RTSOPS
22.
Zurück zum Zitat Atoui WS, Ajib W, Boukadoum M (2018) Offline and online scheduling algorithms for energy harvesting RSUs in VANETs. IEEE Trans Veh Technol 67(7):6370–6382 Atoui WS, Ajib W, Boukadoum M (2018) Offline and online scheduling algorithms for energy harvesting RSUs in VANETs. IEEE Trans Veh Technol 67(7):6370–6382
23.
Zurück zum Zitat Pellerin R, Perrier N, Berthaut F (2020) A survey of hybrid metaheuristics for the resource-constrained project scheduling problem. Eur J Oper Res 280(2):395–416MathSciNet Pellerin R, Perrier N, Berthaut F (2020) A survey of hybrid metaheuristics for the resource-constrained project scheduling problem. Eur J Oper Res 280(2):395–416MathSciNet
24.
Zurück zum Zitat Aytug H, Bhattacharyya S, Koehler GJ, Snowdon JL (1994) A review of machine learning in scheduling. IEEE Trans Eng Manag 41(2):165–171 Aytug H, Bhattacharyya S, Koehler GJ, Snowdon JL (1994) A review of machine learning in scheduling. IEEE Trans Eng Manag 41(2):165–171
25.
Zurück zum Zitat Madni SHH, Abd Latiff MS, Abdullahi M, Abdulhamid SIM, Usman MJ (2017) Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment. PloS one 12(5):e0176321 Madni SHH, Abd Latiff MS, Abdullahi M, Abdulhamid SIM, Usman MJ (2017) Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment. PloS one 12(5):e0176321
26.
Zurück zum Zitat Zhang Yi-wen, Zhang Hui-zhen, Wang Cheng (2017) Reliability-aware low energy scheduling in real time systems with shared resources. Microprocess Microsyst 52:312–324 Zhang Yi-wen, Zhang Hui-zhen, Wang Cheng (2017) Reliability-aware low energy scheduling in real time systems with shared resources. Microprocess Microsyst 52:312–324
27.
Zurück zum Zitat Xie G, Xiao X, Peng H, Li R, Li K (2021) A survey of low-energy parallel scheduling algorithms. IEEE Trans Sustain Comput 7(1):27–46 Xie G, Xiao X, Peng H, Li R, Li K (2021) A survey of low-energy parallel scheduling algorithms. IEEE Trans Sustain Comput 7(1):27–46
28.
Zurück zum Zitat Sheikh HF, Ahmad I (2016) Sixteen heuristics for joint optimization of performance, energy, and temperature in allocating tasks to multi-cores. ACM Trans Parallel Comput (TOPC) 3(2):1–29MathSciNet Sheikh HF, Ahmad I (2016) Sixteen heuristics for joint optimization of performance, energy, and temperature in allocating tasks to multi-cores. ACM Trans Parallel Comput (TOPC) 3(2):1–29MathSciNet
29.
Zurück zum Zitat Ding J et al (2022) A heuristic method for data allocation and task scheduling on heterogeneous multiprocessor systems under memory constraints. In: arXiv preprint arXiv:2206.05268 Ding J et al (2022) A heuristic method for data allocation and task scheduling on heterogeneous multiprocessor systems under memory constraints. In: arXiv preprint arXiv:​2206.​05268
30.
Zurück zum Zitat NoorianTalouki R, Shirvani MH, Motameni H (2022) A heuristic-based task scheduling algorithm for scientific workflows in heterogeneous cloud computing platforms. J King Saud Univ Comput Inf Sci 34(8):4902–4913 NoorianTalouki R, Shirvani MH, Motameni H (2022) A heuristic-based task scheduling algorithm for scientific workflows in heterogeneous cloud computing platforms. J King Saud Univ Comput Inf Sci 34(8):4902–4913
31.
Zurück zum Zitat Mahmood A, Khan SA, Albalooshi F, Awwad N (2017) Energy-aware real-time task scheduling in multiprocessor systems using a hybrid genetic algorithm. Electronics 6(2):40 Mahmood A, Khan SA, Albalooshi F, Awwad N (2017) Energy-aware real-time task scheduling in multiprocessor systems using a hybrid genetic algorithm. Electronics 6(2):40
32.
Zurück zum Zitat Yun Y, Hwang EJ, Kim YH (2019) Adaptive genetic algorithm for energy-efficient task scheduling on asymmetric multiprocessor system-on-chip. Microprocess Microsyst 66:19–30 Yun Y, Hwang EJ, Kim YH (2019) Adaptive genetic algorithm for energy-efficient task scheduling on asymmetric multiprocessor system-on-chip. Microprocess Microsyst 66:19–30
33.
Zurück zum Zitat Taheri G, Khonsari A, Entezari-Maleki R, Sousa L (2020) A hybrid algorithm for task scheduling on heterogeneous multiprocessor embedded systems. Appl Soft Comput 91:106202 Taheri G, Khonsari A, Entezari-Maleki R, Sousa L (2020) A hybrid algorithm for task scheduling on heterogeneous multiprocessor embedded systems. Appl Soft Comput 91:106202
34.
Zurück zum Zitat Kang Duseok et al (2020) Scheduling of deep learning applications onto heterogeneous processors in an embedded device. IEEE Access 8:43980–43991 Kang Duseok et al (2020) Scheduling of deep learning applications onto heterogeneous processors in an embedded device. IEEE Access 8:43980–43991
35.
Zurück zum Zitat Zhang Longxin et al (2017) Bi-objective workflow scheduling of the energy consumption and reliability in heterogeneous computing systems. Inf Sci 379:241–256 Zhang Longxin et al (2017) Bi-objective workflow scheduling of the energy consumption and reliability in heterogeneous computing systems. Inf Sci 379:241–256
36.
Zurück zum Zitat Pillai AS, Singh K, Saravanan V, Anpalagan A, Woungang I, Barolli L (2018) A genetic algorithm-based method for optimizing the energy consumption and performance of multiprocessor systems. Soft Comput 22:3271–3285 Pillai AS, Singh K, Saravanan V, Anpalagan A, Woungang I, Barolli L (2018) A genetic algorithm-based method for optimizing the energy consumption and performance of multiprocessor systems. Soft Comput 22:3271–3285
37.
Zurück zum Zitat Genova K, Guliashki V (2011) Linear integer programming methods and approaches: a survey. J Cybernet Inf Technol 11(1):1MathSciNet Genova K, Guliashki V (2011) Linear integer programming methods and approaches: a survey. J Cybernet Inf Technol 11(1):1MathSciNet
38.
Zurück zum Zitat Glover F (1975) Improved linear integer programming formulations of nonlinear integer problems. Manag Sci 22(4):455–460MathSciNet Glover F (1975) Improved linear integer programming formulations of nonlinear integer problems. Manag Sci 22(4):455–460MathSciNet
39.
Zurück zum Zitat Rai R, Tiwari MK, Ivanov D, Dolgui A (2021) Machine learning in manufacturing and industry 4.0 applications. Int J Prod Res 59(16):4773–4778 Rai R, Tiwari MK, Ivanov D, Dolgui A (2021) Machine learning in manufacturing and industry 4.0 applications. Int J Prod Res 59(16):4773–4778
40.
Zurück zum Zitat Cheng M, Li J, Nazarian S 2018) DRL-cloud: Deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers. In: 3rd Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE. 2018:129–134 Cheng M, Li J, Nazarian S 2018) DRL-cloud: Deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers. In: 3rd Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE. 2018:129–134
41.
Zurück zum Zitat Shyalika Chathurangi, Silva Thushari, Karunananda Asoka (2020) Reinforcement learning in dynamic task scheduling: a review. SN Comput Sci 1:1–17 Shyalika Chathurangi, Silva Thushari, Karunananda Asoka (2020) Reinforcement learning in dynamic task scheduling: a review. SN Comput Sci 1:1–17
42.
Zurück zum Zitat Zhang D, Han X, Deng C (2018) Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE J Power Energy Syst 4(3):362–370 Zhang D, Han X, Deng C (2018) Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE J Power Energy Syst 4(3):362–370
43.
Zurück zum Zitat Huang Z, van der Aalst WM, Lu X, Duan H (2011) Reinforcement learning based resource allocation in business process management. Data Knowl Eng 70(1):127–145 Huang Z, van der Aalst WM, Lu X, Duan H (2011) Reinforcement learning based resource allocation in business process management. Data Knowl Eng 70(1):127–145
44.
Zurück zum Zitat Sun Yong, Tan Wenan (2019) A trust-aware task allocation method using deep q-learning for uncertain mobile crowdsourcing. Human-centric Comput Inf Sci 9:1–27 Sun Yong, Tan Wenan (2019) A trust-aware task allocation method using deep q-learning for uncertain mobile crowdsourcing. Human-centric Comput Inf Sci 9:1–27
45.
Zurück zum Zitat Qin Yao et al (2020) An energy-aware scheduling algorithm for budget-constrained scientific workflows based on multi-objective reinforcement learning. J Supercomput 76:455–480 Qin Yao et al (2020) An energy-aware scheduling algorithm for budget-constrained scientific workflows based on multi-objective reinforcement learning. J Supercomput 76:455–480
46.
Zurück zum Zitat Chen X et al (2020) Age of information aware radio resource management in vehicular networks: a proactive deep reinforcement learning perspective. IEEE Trans wirel Commun 19(4):2268–2281 Chen X et al (2020) Age of information aware radio resource management in vehicular networks: a proactive deep reinforcement learning perspective. IEEE Trans wirel Commun 19(4):2268–2281
47.
Zurück zum Zitat Naderializadeh N, Sydir JJ, Simsek M, Nikopour H (2021) Resource management in wireless networks via multi-agent deep reinforcement learning. IEEE Trans Wirel Commun 20(6):3507–3523 Naderializadeh N, Sydir JJ, Simsek M, Nikopour H (2021) Resource management in wireless networks via multi-agent deep reinforcement learning. IEEE Trans Wirel Commun 20(6):3507–3523
48.
Zurück zum Zitat Hussain F, Hassan SA, Hussain R, Hossain E (2020) Machine learning for resource management in cellular and iot networks: potentials, current solutions, and open challenges. IEEE Commun Surv Tutor 22(2):1251–1275 Hussain F, Hassan SA, Hussain R, Hossain E (2020) Machine learning for resource management in cellular and iot networks: potentials, current solutions, and open challenges. IEEE Commun Surv Tutor 22(2):1251–1275
49.
Zurück zum Zitat XXiao Z, Ma S, Zhang S (2009) Learning task allocation for multiple flows in multi-agent systems. In 2009 International Conference on Communication Software and Networks. IEEE, pp 153-157 XXiao Z, Ma S, Zhang S (2009) Learning task allocation for multiple flows in multi-agent systems. In 2009 International Conference on Communication Software and Networks. IEEE, pp 153-157
50.
Zurück zum Zitat Zhao Xinyi et al (2019) Fast task allocation for heterogeneous unmanned aerial vehicles through reinforcement learning. Aerosp Sci Technol 92:588–594 Zhao Xinyi et al (2019) Fast task allocation for heterogeneous unmanned aerial vehicles through reinforcement learning. Aerosp Sci Technol 92:588–594
51.
Zurück zum Zitat Tian YT, Yang M, Qi XY, Yang YM (2009). Multi-robot task allocation for fire-disaster response based on reinforcement learning. In: 2009 International Conference on Machine Learning and Cybernetics vol. 4 IEEE, pp 2312-2317 Tian YT, Yang M, Qi XY, Yang YM (2009). Multi-robot task allocation for fire-disaster response based on reinforcement learning. In: 2009 International Conference on Machine Learning and Cybernetics vol. 4 IEEE, pp 2312-2317
52.
Zurück zum Zitat Arel I et al (2010) Reinforcement learning-based multi-agent system for network traffic signal control. IET Intell Transp Syst 4:128–135 Arel I et al (2010) Reinforcement learning-based multi-agent system for network traffic signal control. IET Intell Transp Syst 4:128–135
53.
Zurück zum Zitat Mao H, Alizadeh M, Menache I, Kandula S (2016) Resource management with deep reinforcement learning. In: Proceedings of the 15th ACM workshop on hot topics in networks, pp 50-56 Mao H, Alizadeh M, Menache I, Kandula S (2016) Resource management with deep reinforcement learning. In: Proceedings of the 15th ACM workshop on hot topics in networks, pp 50-56
54.
Zurück zum Zitat Rjoub G, Bentahar J, Abdel Wahab O, Saleh Bataineh A (2021) Deep and reinforcement learning for automated task scheduling in large-scale cloud computing systems. Concurr Comput: Pract Exp 33(23):e5919 Rjoub G, Bentahar J, Abdel Wahab O, Saleh Bataineh A (2021) Deep and reinforcement learning for automated task scheduling in large-scale cloud computing systems. Concurr Comput: Pract Exp 33(23):e5919
55.
Zurück zum Zitat Abdi A, Zarandi HR (2019) A meta heuristic-based task scheduling and mapping method to optimize main design challenges of heterogeneous multiprocessor embedded systems. Microelectron J 87:1–11 Abdi A, Zarandi HR (2019) A meta heuristic-based task scheduling and mapping method to optimize main design challenges of heterogeneous multiprocessor embedded systems. Microelectron J 87:1–11
56.
Zurück zum Zitat Ferrandi F, Lanzi PL, Pilato C, Sciuto D, Tumeo A (2010) Ant colony heuristic for mapping and scheduling tasks and communications on heterogeneous embedded systems. IEEE Trans Comput-Aided Des Integr Circuits Syst 29(6):911–924 Ferrandi F, Lanzi PL, Pilato C, Sciuto D, Tumeo A (2010) Ant colony heuristic for mapping and scheduling tasks and communications on heterogeneous embedded systems. IEEE Trans Comput-Aided Des Integr Circuits Syst 29(6):911–924
57.
Zurück zum Zitat Das AK, Kumar A, Veeravalli B, Catthoor F, Das AK, Kumar A, Catthoor F (2018) Literature survey on system-level optimizations techniques. In: Reliable and Energy Efficient Streaming Multiprocessor Systems, pp 33–44 Das AK, Kumar A, Veeravalli B, Catthoor F, Das AK, Kumar A, Catthoor F (2018) Literature survey on system-level optimizations techniques. In: Reliable and Energy Efficient Streaming Multiprocessor Systems, pp 33–44
58.
Zurück zum Zitat Singh AK et al (2013) Mapping on multi/many-core systems: survey of current and emerging trends. In: Proceedings of the 50th Annual Design Automation Conference, pp 1–10 Singh AK et al (2013) Mapping on multi/many-core systems: survey of current and emerging trends. In: Proceedings of the 50th Annual Design Automation Conference, pp 1–10
59.
Zurück zum Zitat Majd A, et al (2017) NOMeS: near-optimal metaheuristic scheduling for MPSoCs. In: 19th international symposium on computer architecture and digital systems (CADS). IEEE, pp 1–6 Majd A, et al (2017) NOMeS: near-optimal metaheuristic scheduling for MPSoCs. In: 19th international symposium on computer architecture and digital systems (CADS). IEEE, pp 1–6
60.
Zurück zum Zitat Akbari M, Rashidi H, Alizadeh SH (2017) An enhanced genetic algorithm with new operators for task scheduling in heterogeneous computing systems. Eng Appl Artif Intell 61:35–46 Akbari M, Rashidi H, Alizadeh SH (2017) An enhanced genetic algorithm with new operators for task scheduling in heterogeneous computing systems. Eng Appl Artif Intell 61:35–46
61.
Zurück zum Zitat Erbas C, Cerav-Erbas S, Pimentel AD (2006) Multiobjective optimization and evolutionary algorithms for the application mapping problem in multiprocessor system-on-chip design. IEEE Trans Evol Comput 10(3):358–374 Erbas C, Cerav-Erbas S, Pimentel AD (2006) Multiobjective optimization and evolutionary algorithms for the application mapping problem in multiprocessor system-on-chip design. IEEE Trans Evol Comput 10(3):358–374
62.
Zurück zum Zitat Gerstlauer A, Haubelt C, Pimentel AD, Stefanov TP, Gajski DD, Teich J (2009) Electronic system-level synthesis methodologies. IEEE Trans Comput-Aided Des Integr Circuits Syst 28(10):1517–1530 Gerstlauer A, Haubelt C, Pimentel AD, Stefanov TP, Gajski DD, Teich J (2009) Electronic system-level synthesis methodologies. IEEE Trans Comput-Aided Des Integr Circuits Syst 28(10):1517–1530
63.
Zurück zum Zitat Quan W, Pimentel AD (2015) A hybrid task mapping algorithm for heterogeneous MPSoCs. ACM Trans Embed Comput Syst 14(1):1–25 Quan W, Pimentel AD (2015) A hybrid task mapping algorithm for heterogeneous MPSoCs. ACM Trans Embed Comput Syst 14(1):1–25
64.
Zurück zum Zitat Abdi A, Zarandi HR (2018) Hystery: a hybrid scheduling and mapping approach to optimize temperature, energy consumption and lifetime reliability of heterogeneous multiprocessor systems. J Supercomput 74:2213–2238 Abdi A, Zarandi HR (2018) Hystery: a hybrid scheduling and mapping approach to optimize temperature, energy consumption and lifetime reliability of heterogeneous multiprocessor systems. J Supercomput 74:2213–2238
65.
Zurück zum Zitat Girault A, Zarandi HR (2019) Erpot: a quad-criteria scheduling heuristic to optimize execution time, reliability, power consumption and temperature in multicores. IEEE Trans Parallel Distrib Syst 30(10):2193–2210 Girault A, Zarandi HR (2019) Erpot: a quad-criteria scheduling heuristic to optimize execution time, reliability, power consumption and temperature in multicores. IEEE Trans Parallel Distrib Syst 30(10):2193–2210
66.
Zurück zum Zitat Balaban HS (1960) Some effects of redundancy on system reliability. In: National symposium on reliability and quality control, pp 385-402 Balaban HS (1960) Some effects of redundancy on system reliability. In: National symposium on reliability and quality control, pp 385-402
67.
Zurück zum Zitat Zhu D, Melhem R, Mosse D (2004) The effects of energy management on reliability in real-time embedded systems. In: IEEE/ACM International Conference on Computer Aided Design, ICCAD-2004, pp 35–40, IEEE Zhu D, Melhem R, Mosse D (2004) The effects of energy management on reliability in real-time embedded systems. In: IEEE/ACM International Conference on Computer Aided Design, ICCAD-2004, pp 35–40, IEEE
68.
Zurück zum Zitat JEDE Council (2002) Failure mechanisms and models for semiconductor devices. In: JEDEC Publication JEP122-A JEDE Council (2002) Failure mechanisms and models for semiconductor devices. In: JEDEC Publication JEP122-A
69.
Zurück zum Zitat Assayad I, Girault A, Kalla H (2004) A bi-criteria scheduling heuristic for distributed embedded systems under reliability and real-time constraints. In: International Conference on Dependable Systems and Networks, IEEE, pp 347–356 Assayad I, Girault A, Kalla H (2004) A bi-criteria scheduling heuristic for distributed embedded systems under reliability and real-time constraints. In: International Conference on Dependable Systems and Networks, IEEE, pp 347–356
70.
Zurück zum Zitat Das A, Kumar A, Veeravalli B, Bolchini C, Miele A (2014) Combined DVFS and mapping exploration for lifetime and soft-error susceptibility improvement in MPSoCs. In: 2014 Design, Automation and Test in Europe Conference and Exhibition (DATE). IEEE, pp 1–6 Das A, Kumar A, Veeravalli B, Bolchini C, Miele A (2014) Combined DVFS and mapping exploration for lifetime and soft-error susceptibility improvement in MPSoCs. In: 2014 Design, Automation and Test in Europe Conference and Exhibition (DATE). IEEE, pp 1–6
71.
Zurück zum Zitat Yang Hoeseok et al (2013) Real-time worst-case temperature analysis with temperature-dependent parameters. Real-Time Syst 49:730–762 Yang Hoeseok et al (2013) Real-time worst-case temperature analysis with temperature-dependent parameters. Real-Time Syst 49:730–762
72.
Zurück zum Zitat Chantem T, Dick RP, Hu XS (2008) Temperature-aware scheduling and assignment for hard real-time applications on MPSoCs. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp 288–293 Chantem T, Dick RP, Hu XS (2008) Temperature-aware scheduling and assignment for hard real-time applications on MPSoCs. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp 288–293
73.
Zurück zum Zitat Nguyen H, La H (2019) Review of deep reinforcement learning for robot manipulation. In 2019 Third IEEE International Conference on Robotic Computing (IRC). IEEE, pp 590–595 Nguyen H, La H (2019) Review of deep reinforcement learning for robot manipulation. In 2019 Third IEEE International Conference on Robotic Computing (IRC). IEEE, pp 590–595
74.
Zurück zum Zitat Sutton RS, Barto AG (1999) Reinforcement learning: an introduction. Robotica 17(2):229–235 Sutton RS, Barto AG (1999) Reinforcement learning: an introduction. Robotica 17(2):229–235
75.
Zurück zum Zitat Dick R (2008) Embedded systems synthesis benchmark suites (e3s). http://ziyang. eecs. umich. edu/ dickrp/e3s/ Dick R (2008) Embedded systems synthesis benchmark suites (e3s). http://​ziyang.​ eecs. umich. edu/ dickrp/e3s/
76.
Zurück zum Zitat Guthaus MR, Ringenberg JS, Ernst D, Austin TM, Mudge T, Brown RB (2001) MiBench: a free, commercially representative embedded benchmark suite. In: Proceedings of the Fourth Annual IEEE International Workshop on Workload Characterization. WWC-4 (Cat. No. 01EX538). IEEE, pp 3–14 Guthaus MR, Ringenberg JS, Ernst D, Austin TM, Mudge T, Brown RB (2001) MiBench: a free, commercially representative embedded benchmark suite. In: Proceedings of the Fourth Annual IEEE International Workshop on Workload Characterization. WWC-4 (Cat. No. 01EX538). IEEE, pp 3–14
77.
Zurück zum Zitat Dick RP, Rhodes DL, Wolf W (1998) TGFF: task graphs for free. In: Proceedings of the sixth international workshop on hardware/software codesign. (CODES/CASHE’98). IEEE, pp 97–101 Dick RP, Rhodes DL, Wolf W (1998) TGFF: task graphs for free. In: Proceedings of the sixth international workshop on hardware/software codesign. (CODES/CASHE’98). IEEE, pp 97–101
78.
Zurück zum Zitat Ekhtiyari Zohreh, Moghaddas Vahidreza, Beitollahi Hakem (2019) A temperatureaware and energy-efficient fuzzy technique to schedule tasks in heterogeneous MPSoC systems. J Supercomput 75:5398–5419 Ekhtiyari Zohreh, Moghaddas Vahidreza, Beitollahi Hakem (2019) A temperatureaware and energy-efficient fuzzy technique to schedule tasks in heterogeneous MPSoC systems. J Supercomput 75:5398–5419
79.
Zurück zum Zitat Bhat G, Singla G, Unver AK, Ogras UY (2017) Algorithmic optimization of thermal and power management for heterogeneous mobile platforms. IEEE Trans Very Large Scale Integr Syst 26(3):544–557 Bhat G, Singla G, Unver AK, Ogras UY (2017) Algorithmic optimization of thermal and power management for heterogeneous mobile platforms. IEEE Trans Very Large Scale Integr Syst 26(3):544–557
80.
Zurück zum Zitat Zhou J, Cao K, Sun J, Zhang Y, Wei T (2019) A framework to solve the energy, makespan and lifetime problems in reliability-driven task scheduling. In: 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, pp 608–614 Zhou J, Cao K, Sun J, Zhang Y, Wei T (2019) A framework to solve the energy, makespan and lifetime problems in reliability-driven task scheduling. In: 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, pp 608–614
81.
Zurück zum Zitat Abdi A, Zarandi HR (2019) A meta heuristic-based task scheduling and mapping method to optimize main design challenges of heterogeneous multiprocessor embedded systems. Microelectron J 87:1–11 Abdi A, Zarandi HR (2019) A meta heuristic-based task scheduling and mapping method to optimize main design challenges of heterogeneous multiprocessor embedded systems. Microelectron J 87:1–11
Metadaten
Titel
Qsmix: Q-learning-based task scheduling approach for mixed-critical applications on heterogeneous multi-cores
verfasst von
Fatemeh Afshari
Athena Abdi
Publikationsdatum
06.05.2024
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 12/2024
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-024-06096-8