Skip to main content

2024 | OriginalPaper | Buchkapitel

Qualitative Research Reasoning on Dementia Forecast Using Machine Learning Techniques

verfasst von : Tanvi Kapdi, Apurva Shah

Erschienen in: Advances in Data-Driven Computing and Intelligent Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rise in mental health issues and the demand for high-quality medical care have prompted researchers to investigate how machine learning might be used to treat mental health issues. Dementia is a disease that causes loss of cognitive skills in a way that interferes with a person’s day-to-day activities. It causes a breakdown of brain function, comprehension, recognition, reasoning, and behavioral abilities to the point where a person experiences difficulties in day-to-day activities. Dementia gradually kills the brain cells and causes people to lose their reading and thinking capabilities. According to the Lancet report, the incidences of dementia cases in India are predicted to nearly triple by 2050. According to the survey, the number of cases is roughly predicted to quadruple to 153 million by 2050. This research presents the analysis and findings related to forecasting dementia using machine learning techniques. The study has been conducted using the Open Access Series of Imaging Studies (OASIS) dataset. This dataset has been explored by using various machine learning algorithms such as support vector machine, random forest, decision tree, logistic regression, AdaBoost, and XGBoost. The conclusion has been drawn regarding the evaluation metrics in accuracy. It has been found that XGBoost gave the best result with 93.02% accuracy. With XGBoost, it is simple to determine the ideal number of boosting iterations in a single run.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kalaria RN, Maestre GE, Arizaga R et al (2018) Alzheimer’s disease and vascular dementia in developing countries: prevalence, management and risk factors. Lancet Neurol 7(9):812–826CrossRef Kalaria RN, Maestre GE, Arizaga R et al (2018) Alzheimer’s disease and vascular dementia in developing countries: prevalence, management and risk factors. Lancet Neurol 7(9):812–826CrossRef
2.
Zurück zum Zitat Mendez MF (2017) Early onset alzheimer disease. Neurologic Clin 35:263–281 Mendez MF (2017) Early onset alzheimer disease. Neurologic Clin 35:263–281
3.
Zurück zum Zitat Jellinger KA (2018) Dementia with Lewy bodies and Parkinson’s disease-dementia: current trends and controversies. J Neural Transm 125(4):615–650CrossRef Jellinger KA (2018) Dementia with Lewy bodies and Parkinson’s disease-dementia: current trends and controversies. J Neural Transm 125(4):615–650CrossRef
4.
Zurück zum Zitat Niessen WJ (2016) Mr brain image analysis in dementia: from quantitative imaging biomarkers to aging brain models and Imaging Genetics. Med Image Anal 33:107–113CrossRef Niessen WJ (2016) Mr brain image analysis in dementia: from quantitative imaging biomarkers to aging brain models and Imaging Genetics. Med Image Anal 33:107–113CrossRef
5.
Zurück zum Zitat Henriksen OM, Marner L, Law I (2016) Clinical pet/mr imaging in dementia and neuro-oncology. PET Clinics 11(4):441–452CrossRef Henriksen OM, Marner L, Law I (2016) Clinical pet/mr imaging in dementia and neuro-oncology. PET Clinics 11(4):441–452CrossRef
6.
Zurück zum Zitat Arab A, Wojna-Pelczar A, Khairnar A, Szabo N, RudaKucerova J (2018) Principle of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders. Brain Res Bull 139:91–98 Arab A, Wojna-Pelczar A, Khairnar A, Szabo N, RudaKucerova J (2018) Principle of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders. Brain Res Bull 139:91–98
8.
Zurück zum Zitat Osama Khalaf I, Ghaida M, Abdul SD (2020) Energy efficient routing and reliable data transmission protocol in WSN. Int J Adv Soft Comput Appl 12:45–53 Osama Khalaf I, Ghaida M, Abdul SD (2020) Energy efficient routing and reliable data transmission protocol in WSN. Int J Adv Soft Comput Appl 12:45–53
9.
Zurück zum Zitat National Academies of Science, Engineering and Medicine (2018) Preventing cognitive decline and dementia: A way forward. London: The National Academies Press National Academies of Science, Engineering and Medicine (2018) Preventing cognitive decline and dementia: A way forward. London: The National Academies Press
11.
Zurück zum Zitat Williams Jennifer A, Weakly A, Cook MS, Edgecombe DJ (2018) Machine learning techniques for diagnostic differentiation of mild cognitive impairment and dementia. In: workshops at the Twenty-Seventh AAAI conference on artificial ıntelligence. 13:9277–82 Williams Jennifer A, Weakly A, Cook MS, Edgecombe DJ (2018) Machine learning techniques for diagnostic differentiation of mild cognitive impairment and dementia. In: workshops at the Twenty-Seventh AAAI conference on artificial ıntelligence. 13:9277–82
13.
Zurück zum Zitat Huang W, Zeng S, Li J, Chen G (2016) A new image-based immersive tool for dementia diagnosis using pairwise ranking and learning. Multimedia Tools Appl 75(9):5359–5376CrossRef Huang W, Zeng S, Li J, Chen G (2016) A new image-based immersive tool for dementia diagnosis using pairwise ranking and learning. Multimedia Tools Appl 75(9):5359–5376CrossRef
14.
Zurück zum Zitat Ishii K Pet approaches for diagnosis of dementia. AJNR Am J Neuroradiol 35(11):2030–2038 Ishii K Pet approaches for diagnosis of dementia. AJNR Am J Neuroradiol 35(11):2030–2038
15.
Zurück zum Zitat Ramirez J, Gorriz J, Salas-Gonzalez D, Romero A, Lopez M, Alvarez I, Gomez-Rio M Computer-aided diagnosis of dementia combining support vector machines and discriminant set of features. Inform Sci 237:59–72 Ramirez J, Gorriz J, Salas-Gonzalez D, Romero A, Lopez M, Alvarez I, Gomez-Rio M Computer-aided diagnosis of dementia combining support vector machines and discriminant set of features. Inform Sci 237:59–72
16.
Zurück zum Zitat Bron EE, Smits M, Niessen WJ, Klein S (2015) Feature selection based on the SVM weight vector for classification of dementia. IEEE J Med Biomed Health Inform 19(5):1617–1626 Bron EE, Smits M, Niessen WJ, Klein S (2015) Feature selection based on the SVM weight vector for classification of dementia. IEEE J Med Biomed Health Inform 19(5):1617–1626
17.
Zurück zum Zitat Sorensen L, Nielsen M (2018) Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination. J Neurosci Methods 302:66–74 Sorensen L, Nielsen M (2018) Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination. J Neurosci Methods 302:66–74
18.
Zurück zum Zitat Nanni L, Lumini A, Zaffonato N (2018) Ensemble based on static classifier selection for automated diagnosis of mild cognitive impairment. J Neurosci Methods 302:42–46CrossRef Nanni L, Lumini A, Zaffonato N (2018) Ensemble based on static classifier selection for automated diagnosis of mild cognitive impairment. J Neurosci Methods 302:42–46CrossRef
19.
Zurück zum Zitat Nambiar Jyothi R, Prakash G (2018) Predictive analysis for healthcare sector using big data technology. In: Second ınternational conference on green computing and ınternet of things (ICGCIoT), IEEE Nambiar Jyothi R, Prakash G (2018) Predictive analysis for healthcare sector using big data technology. In: Second ınternational conference on green computing and ınternet of things (ICGCIoT), IEEE
20.
Zurück zum Zitat Liang H, Mengzi L, Ruixue W, Peixin L, Wei L*, Long L* (2018) Big data in health care: applications and challenges. Data Inform Manage 2(3):ACM 175–197K Liang H, Mengzi L, Ruixue W, Peixin L, Wei L*, Long L* (2018) Big data in health care: applications and challenges. Data Inform Manage 2(3):ACM 175–197K
23.
Zurück zum Zitat Rashmeet T, Inderveer C Network analysis as a computational technique and ıts benefaction for predictive analysis of healthcare data: a systematic review. Archives of Computational Methods in Engineering, Springer https://doi.org/10.1007/s11831-020-09435-z Rashmeet T, Inderveer C Network analysis as a computational technique and ıts benefaction for predictive analysis of healthcare data: a systematic review. Archives of Computational Methods in Engineering, Springer https://​doi.​org/​10.​1007/​s11831-020-09435-z
26.
Zurück zum Zitat Simione M, Yi Z, Nina Z (2020) Compressive big data analytics: an ensemble meta-algorithm for high-dimensional multisource datasets. Compressive Big data analytics v2.0. Plos One. https://doi.org/10.1371/journal.pone.0228520 Simione M, Yi Z, Nina Z (2020) Compressive big data analytics: an ensemble meta-algorithm for high-dimensional multisource datasets. Compressive Big data analytics v2.0. Plos One. https://​doi.​org/​10.​1371/​journal.pone.0228520
27.
Zurück zum Zitat Afsaneh D, Daniella KV, Prerna C, Janine D Identifying behavioral phenotypes of loneliness and social ısolation with passive sensing: statistical analysis, data mining and machine learning of smartphone and fitbit data. JMIR JHealth UHealth 7(7). https://doi.org/10.2196/13209 Afsaneh D, Daniella KV, Prerna C, Janine D Identifying behavioral phenotypes of loneliness and social ısolation with passive sensing: statistical analysis, data mining and machine learning of smartphone and fitbit data. JMIR JHealth UHealth 7(7). https://​doi.​org/​10.​2196/​13209
29.
Zurück zum Zitat Srividya M, Mohanavalli S, Bhalaji N (2018) Behavioral modeling for mental health using machine learning algorithms. J Med Syst 88. Srividya M, Mohanavalli S, Bhalaji N (2018) Behavioral modeling for mental health using machine learning algorithms. J Med Syst 88.
30.
Zurück zum Zitat R. Bhatnagar and G. Gohain, “Prediction Analysis Using Decision Trees and Random Forest Machine Learning Algorithms on Data from Terra (EOS AM-1) & Aqua (EOS PM-1) Satellite Data”, Studies in Computational Intelligence, pp. 107–124, 2019. Available: https://doi.org/10.1007/978-3-030-20212-5_6 [Accessed 4 December 2019]. R. Bhatnagar and G. Gohain, “Prediction Analysis Using Decision Trees and Random Forest Machine Learning Algorithms on Data from Terra (EOS AM-1) & Aqua (EOS PM-1) Satellite Data”, Studies in Computational Intelligence, pp. 107–124, 2019. Available: https://​doi.​org/​10.​1007/​978-3-030-20212-5_​6 [Accessed 4 December 2019].
32.
Zurück zum Zitat Morshedul BA, Shafayet Jamil AHM, Maliha M, Monirujjaman Khan M, Aljahdali S, Kaur M, Singh P, Masud M (2021) Comparative analysis of machine learning algorithms to predict Alzheimer’s data. J Healthcare Eng 9917919. https://doi.org/10.1155/2021/9917919 Morshedul BA, Shafayet Jamil AHM, Maliha M, Monirujjaman Khan M, Aljahdali S, Kaur M, Singh P, Masud M (2021) Comparative analysis of machine learning algorithms to predict Alzheimer’s data. J Healthcare Eng 9917919. https://​doi.​org/​10.​1155/​2021/​9917919
33.
35.
Zurück zum Zitat Rezaei S, Moturu A, Zhao S, Prkachin KM, Hadjistavropoulos T, Taati B (2021) Unobtrusive pain monitoring in older adults with dementia using pairwise and contrastive training. IEEE J Biomed Health Inform 25(5) Rezaei S, Moturu A, Zhao S, Prkachin KM, Hadjistavropoulos T, Taati B (2021) Unobtrusive pain monitoring in older adults with dementia using pairwise and contrastive training. IEEE J Biomed Health Inform 25(5)
36.
Zurück zum Zitat Meng Y, Speier W, Ong M, Arnold CW (2021) HCET: hierarchical clinical embedding with topic modeling on electronic health records for predicting future depression. IEEE J Biomed Health Inform 25(4) Meng Y, Speier W, Ong M, Arnold CW (2021) HCET: hierarchical clinical embedding with topic modeling on electronic health records for predicting future depression. IEEE J Biomed Health Inform 25(4)
37.
Zurück zum Zitat Eke CS, Jammeh E, Li X, Carroll C, Pearson S, Emmanuel teacher (2021) Early detection of Alzheimer's disease with blood plasma proteins using support vector machines. IEEE J Biomed Health Inform25(1) Eke CS, Jammeh E, Li X, Carroll C, Pearson S, Emmanuel teacher (2021) Early detection of Alzheimer's disease with blood plasma proteins using support vector machines. IEEE J Biomed Health Inform25(1)
38.
Zurück zum Zitat Khan T, Jacobs PG (2021) Prediction of mild cognitive impairment using movement complexity. IEEE J Biomed Health Inform 25(1) Khan T, Jacobs PG (2021) Prediction of mild cognitive impairment using movement complexity. IEEE J Biomed Health Inform 25(1)
39.
Zurück zum Zitat Boser BE, Guyon IM, Vapnik VN A training algorithm for optimal marginal classifiers. In: Proceedings of annual ACM workshop on computational learning theory, vol 5, pp 145–152 Boser BE, Guyon IM, Vapnik VN A training algorithm for optimal marginal classifiers. In: Proceedings of annual ACM workshop on computational learning theory, vol 5, pp 145–152
40.
Zurück zum Zitat Dolph CV, Alam M, Shboul Z, Samad MS (2017) Deep learning of texture and structural features for multiclass Alzheimer’s disease classification. Int Joint Conferen Neural Netw 2259–2266 Dolph CV, Alam M, Shboul Z, Samad MS (2017) Deep learning of texture and structural features for multiclass Alzheimer’s disease classification. Int Joint Conferen Neural Netw 2259–2266
41.
Zurück zum Zitat Akhila JA, Markose C, Aneesh RP (2017) Feature extraction and classification of dementia with neural network. In: International conference on intelligent computing, instrumentation and control technologies, pp 1446–1450 Akhila JA, Markose C, Aneesh RP (2017) Feature extraction and classification of dementia with neural network. In: International conference on intelligent computing, instrumentation and control technologies, pp 1446–1450
42.
Zurück zum Zitat Alam R, Anderson M, Bankole A, Lach J (2018) Inferring physical agitation in dementia using a smartwatch and sequential behavior models. In: IEEE EMBS international conference on biomedical informatics, pp 170–173 Alam R, Anderson M, Bankole A, Lach J (2018) Inferring physical agitation in dementia using a smartwatch and sequential behavior models. In: IEEE EMBS international conference on biomedical informatics, pp 170–173
43.
Zurück zum Zitat Ju R, Hu C, Zhou P, Li Q (2017) Early diagnosis of Alzheimer’s disease based on resting state brain networks and deep learning. IEEE/ACM Transact Comput Biol Bioinform 1–1 Ju R, Hu C, Zhou P, Li Q (2017) Early diagnosis of Alzheimer’s disease based on resting state brain networks and deep learning. IEEE/ACM Transact Comput Biol Bioinform 1–1
44.
Zurück zum Zitat Liu J, Shang S, Zheng K, Wen JR (2016) Multiview ensemble learning for dementia diagnosis from neuroimaging: an artificial neural network approach. Neurocomputing 195:112–116CrossRef Liu J, Shang S, Zheng K, Wen JR (2016) Multiview ensemble learning for dementia diagnosis from neuroimaging: an artificial neural network approach. Neurocomputing 195:112–116CrossRef
45.
Zurück zum Zitat Islam J, Zhang Y (2017) A novel deep learning based multi-class classification method for Alzheimer’s disease detection using brain MRI data. In: International conference on brain ınformatics, pp 213–222 Islam J, Zhang Y (2017) A novel deep learning based multi-class classification method for Alzheimer’s disease detection using brain MRI data. In: International conference on brain ınformatics, pp 213–222
48.
Zurück zum Zitat Al-Qazzazz NK, Ali SHBM, Ahmad SM, Chellappan K, Islam MS, Escudero J (2014) Role of the egg as a biomarker in the early detection and classification of dementia. Scientific World J 2014:9003068 Al-Qazzazz NK, Ali SHBM, Ahmad SM, Chellappan K, Islam MS, Escudero J (2014) Role of the egg as a biomarker in the early detection and classification of dementia. Scientific World J 2014:9003068
49.
Zurück zum Zitat Shi J, Zheng X, Li Y, Zhang Q, Ying Y (2018) Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J Biomed Health Inform 22(1):173–183CrossRef Shi J, Zheng X, Li Y, Zhang Q, Ying Y (2018) Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J Biomed Health Inform 22(1):173–183CrossRef
50.
Zurück zum Zitat Patel HH, Prajapati P (2018) Study and analysis of decision tree based classification algorithm. Int J Comput Sci Eng 6(10):74–78 Patel HH, Prajapati P (2018) Study and analysis of decision tree based classification algorithm. Int J Comput Sci Eng 6(10):74–78
Metadaten
Titel
Qualitative Research Reasoning on Dementia Forecast Using Machine Learning Techniques
verfasst von
Tanvi Kapdi
Apurva Shah
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9521-9_9