Skip to main content

2016 | OriginalPaper | Buchkapitel

Quantification of Prediction Uncertainty in Artificial Neural Network Models

verfasst von : K. S. Kasiviswanathan, K. P. Sudheer, Jianxun He

Erschienen in: Artificial Neural Network Modelling

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The research towards improving the prediction and forecasting of artificial neural network (ANN) based models has gained significant interest while solving various engineering problems. Consequently, different approaches for the development of ANN models have been proposed. However, the point estimation of ANN forecasts seldom explains the actual mechanism that brings the relationship among modeled variables. This raises the question on the model output while making decisions due to the inherent variability or uncertainty associated. The standard procedure though available for the quantification of uncertainty, their applications in ANN model are still limited. In this chapter, commonly employed uncertainty methods such as bootstrap and Bayesian are applied in ANN and demonstrated through a case example of flood forecasting models. It also discusses the merits and limitations of bootstrap ANN (BTANN) and Bayesian ANN (BANN) models in terms of convergence of parameter and quality of prediction interval evaluated using uncertainty indices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.P. Sudheer, Knowledge extraction from trained neural network river flow models. J. Hydrol. Eng. 10(4), 264–269 (2005)CrossRef K.P. Sudheer, Knowledge extraction from trained neural network river flow models. J. Hydrol. Eng. 10(4), 264–269 (2005)CrossRef
2.
Zurück zum Zitat H.R. Maier, A. Jain, G.C. Dandy, K.P. Sudheer, Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model Softw. 25, 891–909 (2010)CrossRef H.R. Maier, A. Jain, G.C. Dandy, K.P. Sudheer, Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model Softw. 25, 891–909 (2010)CrossRef
3.
Zurück zum Zitat A. Elshorbagy, G. Corzo, S. Srinivasulu, D.P. Solomatine, Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology—Part 2: concepts and methodology. Hydrol. Earth Syst. Sci. 14(10), 1931–1941 (2010)CrossRef A. Elshorbagy, G. Corzo, S. Srinivasulu, D.P. Solomatine, Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology—Part 2: concepts and methodology. Hydrol. Earth Syst. Sci. 14(10), 1931–1941 (2010)CrossRef
4.
Zurück zum Zitat A. Elshorbagy, G. Corzo, S. Srinivasulu, D.P. Solomatine, Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology—Part 2: application. Hydrol. Earth Syst. Sci. 14(10), 1943–1961 (2010)CrossRef A. Elshorbagy, G. Corzo, S. Srinivasulu, D.P. Solomatine, Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology—Part 2: application. Hydrol. Earth Syst. Sci. 14(10), 1943–1961 (2010)CrossRef
5.
Zurück zum Zitat C.M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, New York, 1995) C.M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, New York, 1995)
6.
Zurück zum Zitat D.L. Shrestha, D.P. Solomatine, Machine learning approaches for estimation of prediction interval for the model output. Neural Netw. 19, 225–235 (2006)CrossRefMATH D.L. Shrestha, D.P. Solomatine, Machine learning approaches for estimation of prediction interval for the model output. Neural Netw. 19, 225–235 (2006)CrossRefMATH
7.
Zurück zum Zitat T. Wagener, H.V. Gupta, Model identification for hydrological forecasting under uncertainty. Stoch. Environ. Res. Risk Assess. 19(6), 378–387 (2005)CrossRefMATH T. Wagener, H.V. Gupta, Model identification for hydrological forecasting under uncertainty. Stoch. Environ. Res. Risk Assess. 19(6), 378–387 (2005)CrossRefMATH
8.
Zurück zum Zitat K.J.C. MacKay, A practical Bayesian framework for backpropagation. Netw. Neural Comput. 4, 448–472 (1992)CrossRef K.J.C. MacKay, A practical Bayesian framework for backpropagation. Netw. Neural Comput. 4, 448–472 (1992)CrossRef
9.
Zurück zum Zitat N.M. Radford, Bayesian Learning for Neural Networks. Lecture Notes in Statistics, vol. 118 (Springer, NewYork, (1996) N.M. Radford, Bayesian Learning for Neural Networks. Lecture Notes in Statistics, vol. 118 (Springer, NewYork, (1996)
10.
Zurück zum Zitat M.S. Khan, P. Coulibaly, Y. Dibike, Uncertainty analysis of statistical downscaling methods. J. Hydrol. 319, 357–382 (2006)CrossRef M.S. Khan, P. Coulibaly, Y. Dibike, Uncertainty analysis of statistical downscaling methods. J. Hydrol. 319, 357–382 (2006)CrossRef
11.
Zurück zum Zitat X. Zhang, F. Liang, R. Srinivasan, M. Van Liew, Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour. Res. 45(2), 1–16 (2009) X. Zhang, F. Liang, R. Srinivasan, M. Van Liew, Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour. Res. 45(2), 1–16 (2009)
12.
Zurück zum Zitat R.K. Srivastav, K.P. Sudheer, I. Chaubey, A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resour. Res. 43(10), W10407 (2007) R.K. Srivastav, K.P. Sudheer, I. Chaubey, A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resour. Res. 43(10), W10407 (2007)
13.
Zurück zum Zitat S.K. Sharma, K.N. Tiwari, Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment. J. Hydrol. 374(3–4), 209–222 (2009)CrossRef S.K. Sharma, K.N. Tiwari, Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment. J. Hydrol. 374(3–4), 209–222 (2009)CrossRef
14.
Zurück zum Zitat R.R. Shrestha, F. Nestmann, Physically Based and data-driven models and propagation of Input uncertainties in river flood prediction. J. Hydrol. Eng. 14(December), 1309–1319 (2009)CrossRef R.R. Shrestha, F. Nestmann, Physically Based and data-driven models and propagation of Input uncertainties in river flood prediction. J. Hydrol. Eng. 14(December), 1309–1319 (2009)CrossRef
15.
Zurück zum Zitat S. Alvisi, M. Franchini, Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ. Model Softw. 26(4), 523–537 (2011)CrossRef S. Alvisi, M. Franchini, Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ. Model Softw. 26(4), 523–537 (2011)CrossRef
16.
Zurück zum Zitat G.J. Bowden, H.R. Maier, G.C. Dandy, Input determination for neural network models in water resources applications. Part 1—background and methodology. J. Hydrol. 301(1–4), 75–92 (2005)CrossRef G.J. Bowden, H.R. Maier, G.C. Dandy, Input determination for neural network models in water resources applications. Part 1—background and methodology. J. Hydrol. 301(1–4), 75–92 (2005)CrossRef
17.
Zurück zum Zitat G.J. Bowden, H.R. Maier, G.C. Dandy, Input determination for neural network models in water resources applications. Part 2—case study: forecasting salinity in a river. J. Hydrol. 301(1–4), 93–107 (2005)CrossRef G.J. Bowden, H.R. Maier, G.C. Dandy, Input determination for neural network models in water resources applications. Part 2—case study: forecasting salinity in a river. J. Hydrol. 301(1–4), 93–107 (2005)CrossRef
18.
Zurück zum Zitat M. Campolo, A. Soldati, P. Andreussi, Forecasting river flow rate during low-flow periods using neural networks. Water Resour. Res. 35(11), 3547–3552 (1999)CrossRef M. Campolo, A. Soldati, P. Andreussi, Forecasting river flow rate during low-flow periods using neural networks. Water Resour. Res. 35(11), 3547–3552 (1999)CrossRef
19.
Zurück zum Zitat K. Thirumalaiah, M.C. Deo, Hydrological forecasting using neural networks. J. Hydrol. Eng. 5(2), 180–189 (2000)CrossRef K. Thirumalaiah, M.C. Deo, Hydrological forecasting using neural networks. J. Hydrol. Eng. 5(2), 180–189 (2000)CrossRef
20.
Zurück zum Zitat D. Silverman, J.A. Dracup, Artificial neural networks and long-range precipitation in California. J. Appl. Meteorol. 31(1), 57–66 (2000)CrossRef D. Silverman, J.A. Dracup, Artificial neural networks and long-range precipitation in California. J. Appl. Meteorol. 31(1), 57–66 (2000)CrossRef
21.
Zurück zum Zitat K.P. Sudheer, A.K. Gosain, K.S. Ramasastri, A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 16(6), 1325–1330 (2002) K.P. Sudheer, A.K. Gosain, K.S. Ramasastri, A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 16(6), 1325–1330 (2002)
22.
Zurück zum Zitat A.S. Tokar, P.A. Johnson, Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 4(3), 232–239 (1999)CrossRef A.S. Tokar, P.A. Johnson, Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 4(3), 232–239 (1999)CrossRef
24.
Zurück zum Zitat A.P. Piotrowski, J.J. Napiorkowski, A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. J. Hydrol. 476, 97–111 (2013)CrossRef A.P. Piotrowski, J.J. Napiorkowski, A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. J. Hydrol. 476, 97–111 (2013)CrossRef
25.
Zurück zum Zitat R.J. Abrahart, L. See, Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Process. 14(11–12), 2157–2172 (2000)CrossRef R.J. Abrahart, L. See, Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Process. 14(11–12), 2157–2172 (2000)CrossRef
26.
Zurück zum Zitat P.C. Nayak, K.P. Sudheer, D.M. Rangan, K.S. Ramasastri, Short-term flood forecasting with a neurofuzzy model. Water Resour. Res. 41(4), 1–16 (2005). December 2004 P.C. Nayak, K.P. Sudheer, D.M. Rangan, K.S. Ramasastri, Short-term flood forecasting with a neurofuzzy model. Water Resour. Res. 41(4), 1–16 (2005). December 2004
27.
Zurück zum Zitat K.S. Kasiviswanathan, R. Cibin, K.P. Sudheer, I. Chaubey, Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations. J. Hydrol. 499, 275–288 (2013)CrossRef K.S. Kasiviswanathan, R. Cibin, K.P. Sudheer, I. Chaubey, Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations. J. Hydrol. 499, 275–288 (2013)CrossRef
28.
Zurück zum Zitat J.E. Nash, J.V. Sutcliffe, River flow forecasting through conceptual models: 1. A discussion of principles. J. Hydrol. 10, 282–290 (1970)CrossRef J.E. Nash, J.V. Sutcliffe, River flow forecasting through conceptual models: 1. A discussion of principles. J. Hydrol. 10, 282–290 (1970)CrossRef
29.
Zurück zum Zitat K.S. Kasiviswanathan, K.P. Sudheer, Quantification of the predictive uncertainty of artificial neural network based river flow forecast models. Stoch. Environ. Res. Risk Assess. 27(1), 137–146 (2013)CrossRef K.S. Kasiviswanathan, K.P. Sudheer, Quantification of the predictive uncertainty of artificial neural network based river flow forecast models. Stoch. Environ. Res. Risk Assess. 27(1), 137–146 (2013)CrossRef
30.
31.
Zurück zum Zitat M.K. Tiwari, J. Adamowski, Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resour. Res. 49(10), 6486–6507 (2013)CrossRef M.K. Tiwari, J. Adamowski, Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resour. Res. 49(10), 6486–6507 (2013)CrossRef
Metadaten
Titel
Quantification of Prediction Uncertainty in Artificial Neural Network Models
verfasst von
K. S. Kasiviswanathan
K. P. Sudheer
Jianxun He
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-28495-8_8