Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 6/2021

27.04.2021 | POLICIES AND SUPPORT IN RELATION TO LCA

Quantification of the environmental and economic benefits of the electrification of lawn mowers on the US residential market

verfasst von: Michael Saidani, Harrison Kim

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Gasoline-powered lawn mowers and garden equipment are emitting 30 million tons of pollutants yearly in the USA, accounting for a quarter of all non-road gasoline emissions. While the US market is dominated by gasoline-powered lawn mowers, this study offers an assessment of the environmental implication and cost of electrifying the lawn mower industry.

Methods

First, the lifecycle environmental footprint and total cost of ownership of electric-powered mowers are calculated and compared to those of conventional gasoline-powered counterparts, using life cycle assessment (LCA) and life cycle costing (LCC) methodologies. A multi-indicator impact assessment is notably conducted, using the SimaPro software (v8.5), the ReCiPe methodology (H), and the ecoinvent database (v3.4) completed with data from the GREET model for the use phase. Second, an extrapolation model is computed to interpret the results at a national and regional scale, considering the proper energy mix in each US state. The combination of LCA and LCC results, mapped out in a two-dimensional chart, allows a clear visual representation of the environmental and economic trade-offs between the gasoline and electric solutions.

Results and discussion

The findings indicate a reduction of 49.9% and 32.3% of CO2 emissions, respectively, for push and riding mowers, by using the electric solution instead of the conventional one over their lifecycle. Yet, the total cost of ownership is slightly higher (4.7–10.6%) for the electric solutions, even if the operating costs are lower. And as the initial buying price of the electric solution is more expensive than the gasoline solution of the same category, this could be a real hindrance for consumers who do not systematically consider the overall lifecycle cost when comparing mowers. In this line, the quantification of a suitable financial incentive to support the electrification of the lawn mower market is of utmost importance and appears as a promising line for future work.

Conclusions

The present results are significant in at least two major respects for the potential electrification of lawn mowing equipment. First, they show how an increased market share of electric mowers can contribute to cutting down greenhouse gas emissions. Second, such quantitative results can be useful for decision-makers in businesses and state governments to take appropriate ecological actions, e.g., in the development of adequate financial incentives or green policy to support the energy transition in this sector, and thus tackle global warming.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Archsmith J, Kendall A, Rapson D (2015) From cradle to junkyard: assessing the life cycle greenhouse gas benefits of electric vehicles. Res Transp Econ 52:72–90CrossRef Archsmith J, Kendall A, Rapson D (2015) From cradle to junkyard: assessing the life cycle greenhouse gas benefits of electric vehicles. Res Transp Econ 52:72–90CrossRef
Zurück zum Zitat Banks JL, McConnell R (2015) US national emissions from lawn and garden equipment. International Emissions Inventory Conference, April 2015, San Diego, USA. Banks JL, McConnell R (2015) US national emissions from lawn and garden equipment. International Emissions Inventory Conference, April 2015, San Diego, USA.
Zurück zum Zitat Caldeira K, Brown PT (2019) Reduced emissions through climate damage to the economy. Proc Natl Acad Sci USA 116(3):714–716CrossRef Caldeira K, Brown PT (2019) Reduced emissions through climate damage to the economy. Proc Natl Acad Sci USA 116(3):714–716CrossRef
Zurück zum Zitat Charif M (2013) Comparative life cycle assessment of biodiesel- and battery-powered ride-on mowers. University of British Columbia, Report, A SEEDS Project, December, p 2013 Charif M (2013) Comparative life cycle assessment of biodiesel- and battery-powered ride-on mowers. University of British Columbia, Report, A SEEDS Project, December, p 2013
Zurück zum Zitat Chen S et al (2017) The environmental burdens of lead-acid batteries in China: insights from an integrated material flow analysis and life cycle assessment of lead. Energies 10:1969CrossRef Chen S et al (2017) The environmental burdens of lead-acid batteries in China: insights from an integrated material flow analysis and life cycle assessment of lead. Energies 10:1969CrossRef
Zurück zum Zitat Dai Q, Kelly JC, Gaines L, Wang M (2019) Life cycle analysis of lithium-ion batteries for automotive applications. Batteries 5:48CrossRef Dai Q, Kelly JC, Gaines L, Wang M (2019) Life cycle analysis of lithium-ion batteries for automotive applications. Batteries 5:48CrossRef
Zurück zum Zitat Dangerman ATCJ, Schellnhuber HJ (2013) Energy systems transformation. Proc Natl Acad Sci USA 110:E549–E558CrossRef Dangerman ATCJ, Schellnhuber HJ (2013) Energy systems transformation. Proc Natl Acad Sci USA 110:E549–E558CrossRef
Zurück zum Zitat Diamond D (2009) The impact of government incentives for hybrid-electric vehicles: evidence from US states. Energy Policy 37:972–983CrossRef Diamond D (2009) The impact of government incentives for hybrid-electric vehicles: evidence from US states. Energy Policy 37:972–983CrossRef
Zurück zum Zitat Edwards RWJ, Celia MA (2018) Infrastructure to enable deployment of carbon capture, utilization, and storage in the United States. Proc Natl Acad Sci USA 115(38):E8815–E8824CrossRef Edwards RWJ, Celia MA (2018) Infrastructure to enable deployment of carbon capture, utilization, and storage in the United States. Proc Natl Acad Sci USA 115(38):E8815–E8824CrossRef
Zurück zum Zitat Egede P, Dettmer T, Herrmann C, Kara S (2015) Life cycle assessment of electric vehicles – a framework to consider influencing factors. Procedia CIRP 29:233–238CrossRef Egede P, Dettmer T, Herrmann C, Kara S (2015) Life cycle assessment of electric vehicles – a framework to consider influencing factors. Procedia CIRP 29:233–238CrossRef
Zurück zum Zitat Ellingsen LA et al (2014) Life cycle assessment of a lithium-ion battery vehicle pack. J Ind Ecol 18:113–124CrossRef Ellingsen LA et al (2014) Life cycle assessment of a lithium-ion battery vehicle pack. J Ind Ecol 18:113–124CrossRef
Zurück zum Zitat Environmental Protection Agency (2006) Life Cycle Assessment: Principles and Practice. Document US EPA/600/R-06/060 Environmental Protection Agency (2006) Life Cycle Assessment: Principles and Practice. Document US EPA/600/R-06/060
Zurück zum Zitat Environmental Protection Agency (2013) Application of life-cycle assessment to nanoscale technology: lithium-ion batteries for electric vehicles. EPA 744-R-12–001 Environmental Protection Agency (2013) Application of life-cycle assessment to nanoscale technology: lithium-ion batteries for electric vehicles. EPA 744-R-12–001
Zurück zum Zitat Gaines LL, Dunn JB (2014) Lithium-ion battery environmental impacts, Editor(s): Gianfranco Pistoia, Lithium-Ion Batteries, Elsevier, 483–508. Gaines LL, Dunn JB (2014) Lithium-ion battery environmental impacts, Editor(s): Gianfranco Pistoia, Lithium-Ion Batteries, Elsevier, 483–508.
Zurück zum Zitat Girardi P, Gargiulo A, Brambilla PC (2015) A comparative LCA of an electric vehicle and an internal combustion engine vehicle using the appropriate power mix: the Italian case study. Int J Life Cycle Assess 20(8):1127–1142CrossRef Girardi P, Gargiulo A, Brambilla PC (2015) A comparative LCA of an electric vehicle and an internal combustion engine vehicle using the appropriate power mix: the Italian case study. Int J Life Cycle Assess 20(8):1127–1142CrossRef
Zurück zum Zitat Girardi P, Brambilla C, Mela G (2020) Life cycle air emissions external costs assessment for comparing electric and traditional passenger cars. Integr Environ Assess Manag 16(1):140–150CrossRef Girardi P, Brambilla C, Mela G (2020) Life cycle air emissions external costs assessment for comparing electric and traditional passenger cars. Integr Environ Assess Manag 16(1):140–150CrossRef
Zurück zum Zitat Goedkoop MJ, et al. (2008) ReCiPe 2008, A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report. Goedkoop MJ, et al. (2008) ReCiPe 2008, A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report.
Zurück zum Zitat Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17:53–64CrossRef Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17:53–64CrossRef
Zurück zum Zitat Hidrue MK, Parsons GR, Kempton W, Gardner MP (2011) Willingness to pay for electric vehicles and their attributes. Resour Energy Econ 33(3):686–705CrossRef Hidrue MK, Parsons GR, Kempton W, Gardner MP (2011) Willingness to pay for electric vehicles and their attributes. Resour Energy Econ 33(3):686–705CrossRef
Zurück zum Zitat Hill L, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103(30):11206–11210CrossRef Hill L, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103(30):11206–11210CrossRef
Zurück zum Zitat Intergovernmental Panel on Climate Change (2014) Technical summary. Climate Change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds Edenhofer O, et al., Cambridge Univ Press. Intergovernmental Panel on Climate Change (2014) Technical summary. Climate Change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds Edenhofer O, et al., Cambridge Univ Press.
Zurück zum Zitat International Energy Agency (2017) Energy technology perspectives. International Energy Agency, Paris International Energy Agency (2017) Energy technology perspectives. International Energy Agency, Paris
Zurück zum Zitat International Organization for Standardization (2006) ISO 14040: 2006 Environmental management - life cycle assessment - principles and framework. In: ISO 14000 International Standards Compendium. Genève, Switzerland International Organization for Standardization (2006) ISO 14040: 2006 Environmental management - life cycle assessment - principles and framework. In: ISO 14000 International Standards Compendium. Genève, Switzerland
Zurück zum Zitat International Organization for Standardization (2006) ISO 14044: 2006 Environmental management - life cycle assessment - requirements and guidelines. In: ISO 14000 International Standards Compendium. Genève, Switzerland. International Organization for Standardization (2006) ISO 14044: 2006 Environmental management - life cycle assessment - requirements and guidelines. In: ISO 14000 International Standards Compendium. Genève, Switzerland.
Zurück zum Zitat Kendall A, Ambrose H, Maroney EA (2019) Life cycle-based policies are required to achieve emissions goals from light-duty vehicles. UC Davis, Policy Briefs Kendall A, Ambrose H, Maroney EA (2019) Life cycle-based policies are required to achieve emissions goals from light-duty vehicles. UC Davis, Policy Briefs
Zurück zum Zitat Kwak M, Kim H (2013) Economic and environmental impacts of product service lifetime: a life-cycle perspective. In Product-Service Integration for Sustainable Solutions (pp. 177–189). Springer, Berlin, Heidelberg Kwak M, Kim H (2013) Economic and environmental impacts of product service lifetime: a life-cycle perspective. In Product-Service Integration for Sustainable Solutions (pp. 177–189). Springer, Berlin, Heidelberg
Zurück zum Zitat Lan X, Liu Y (2010) Life cycle assessment of lawnmowers - two mowers’ case studies. Master’s Thesis in Environmental Measurements and Assessments. Department of Energy and Environment, Chalmers University of Technology, Göteborg, Sweden Lan X, Liu Y (2010) Life cycle assessment of lawnmowers - two mowers’ case studies. Master’s Thesis in Environmental Measurements and Assessments. Department of Energy and Environment, Chalmers University of Technology, Göteborg, Sweden
Zurück zum Zitat Liu W et al (2015) Life cycle assessment of lead-acid batteries used in electric bicycles in China. J Clean Prod 108:1149–1156CrossRef Liu W et al (2015) Life cycle assessment of lead-acid batteries used in electric bicycles in China. J Clean Prod 108:1149–1156CrossRef
Zurück zum Zitat Ma H, Balthasar F, Tait N, Riera-Palou X, Harrison A (2012) A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energy Policy 44:160–173CrossRef Ma H, Balthasar F, Tait N, Riera-Palou X, Harrison A (2012) A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energy Policy 44:160–173CrossRef
Zurück zum Zitat Miller MD (2018) Rethinking electric vehicle incentives. Colo. Nat. Res, Energy & Envtl L Rev Vol. 29:2 Miller MD (2018) Rethinking electric vehicle incentives. Colo. Nat. Res, Energy & Envtl L Rev Vol. 29:2
Zurück zum Zitat Nordelöf A et al (2014) Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment? Int J Life Cycle Assess 19(11):1866–1890CrossRef Nordelöf A et al (2014) Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment? Int J Life Cycle Assess 19(11):1866–1890CrossRef
Zurück zum Zitat Oron AP (2015) Electric vehicle footprint analysis is misleading. Proc Natl Acad Sci USA 112:E3973CrossRef Oron AP (2015) Electric vehicle footprint analysis is misleading. Proc Natl Acad Sci USA 112:E3973CrossRef
Zurück zum Zitat Rigamonti L et al (2017) Supporting a transition towards sustainable circular economy: sensitivity analysis for the interpretation of LCA for the recovery of electric and electronic waste. Int J Life Cycle Assess 22(8):1278–1287CrossRef Rigamonti L et al (2017) Supporting a transition towards sustainable circular economy: sensitivity analysis for the interpretation of LCA for the recovery of electric and electronic waste. Int J Life Cycle Assess 22(8):1278–1287CrossRef
Zurück zum Zitat Roy PO, Ménard JF, Fallaha S (2016) Comparative life cycle assessment of electric and conventional vehicles used in Québec. Canada, World Electr Veh J, p 8 Roy PO, Ménard JF, Fallaha S (2016) Comparative life cycle assessment of electric and conventional vehicles used in Québec. Canada, World Electr Veh J, p 8
Zurück zum Zitat Saidani M, Kim H, Yannou B, Leroy Y, Cluzel F (2019) Framing product circularity performance for optimized green profit. In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection Saidani M, Kim H, Yannou B, Leroy Y, Cluzel F (2019) Framing product circularity performance for optimized green profit. In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection
Zurück zum Zitat Saidani M, Pan E, Kim H, Greenlee A, Wattonville J et al (2020) Assessing the environmental and economic sustainability of autonomous systems: a case study in the agricultural industry. Procedia CIRP 90:209–214CrossRef Saidani M, Pan E, Kim H, Greenlee A, Wattonville J et al (2020) Assessing the environmental and economic sustainability of autonomous systems: a case study in the agricultural industry. Procedia CIRP 90:209–214CrossRef
Zurück zum Zitat Sivak M, Schoettle B (2016) Relative costs of driving electric and gasoline vehicles in the individual US States. University of Michigan, Report No. SWT-2018–1 Sivak M, Schoettle B (2016) Relative costs of driving electric and gasoline vehicles in the individual US States. University of Michigan, Report No. SWT-2018–1
Zurück zum Zitat Sivaraman D, Lindner AS (2004) A Comparative life cycle analysis of gasoline-, battery-, and electricity-powered lawn mowers. Environ Eng Sci 21(6) Sivaraman D, Lindner AS (2004) A Comparative life cycle analysis of gasoline-, battery-, and electricity-powered lawn mowers. Environ Eng Sci 21(6)
Zurück zum Zitat Stucki M, Jattke M, Berr M et al (2021) How life cycle–based science and practice support the transition towards a sustainable economy. In Press, Int J Life Cycle Assess Stucki M, Jattke M, Berr M et al (2021) How life cycle–based science and practice support the transition towards a sustainable economy. In Press, Int J Life Cycle Assess
Zurück zum Zitat Sullivan JL, Gaines L (2012) Status of life cycle inventories for batteries. Energy Convers Manag 58:134–148CrossRef Sullivan JL, Gaines L (2012) Status of life cycle inventories for batteries. Energy Convers Manag 58:134–148CrossRef
Zurück zum Zitat Technavio (2017) Electric lawn mowers market to register the highest growth through 2021. Report Technavio (2017) Electric lawn mowers market to register the highest growth through 2021. Report
Zurück zum Zitat Tessum CW, Hill JD, Marshall JD (2014) Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States. Proc Natl Acad Sci USA 111(52):18490–18495CrossRef Tessum CW, Hill JD, Marshall JD (2014) Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States. Proc Natl Acad Sci USA 111(52):18490–18495CrossRef
Zurück zum Zitat United Nations Environment Programme (2019) Emissions Gap Report 2019. Executive summary, UNEP, Nairobi United Nations Environment Programme (2019) Emissions Gap Report 2019. Executive summary, UNEP, Nairobi
Zurück zum Zitat van den Bergh JCJM (2013) Policy mix for a sustainable energy transition. Proc Natl Acad Sci USA 110(7):2436–2437CrossRef van den Bergh JCJM (2013) Policy mix for a sustainable energy transition. Proc Natl Acad Sci USA 110(7):2436–2437CrossRef
Zurück zum Zitat Vargas JEV et al (2019) Life cycle assessment of electric vehicles and buses in Brazil: effects of local manufacturing, mass reduction, and energy consumption evolution. Int J Life Cycle Assess 24(10):1878–1897CrossRef Vargas JEV et al (2019) Life cycle assessment of electric vehicles and buses in Brazil: effects of local manufacturing, mass reduction, and energy consumption evolution. Int J Life Cycle Assess 24(10):1878–1897CrossRef
Zurück zum Zitat Wang M, Elgowainy A, Lee U, Bafana A, Benavides PT et al (2020) Summary of expansions and updates in GREET® 2020 (No. ANL/ESD-20/9). Argonne National Lab (ANL), Argonne, IL (United States) Wang M, Elgowainy A, Lee U, Bafana A, Benavides PT et al (2020) Summary of expansions and updates in GREET® 2020 (No. ANL/ESD-20/9). Argonne National Lab (ANL), Argonne, IL (United States)
Zurück zum Zitat Weis A, Jaramillo P, Michalek J (2016) Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection. Environ Res Lett 11(2):024009CrossRef Weis A, Jaramillo P, Michalek J (2016) Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection. Environ Res Lett 11(2):024009CrossRef
Zurück zum Zitat Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21(9):1218–1230CrossRef Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21(9):1218–1230CrossRef
Zurück zum Zitat Williams JH et al (2012) The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335(6064):53–59CrossRef Williams JH et al (2012) The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335(6064):53–59CrossRef
Zurück zum Zitat Yang F, Xie Y, Deng Y, Yuan C (2019) Impacts of battery degradation on state-level energy consumption and GHG emissions from electric vehicle operation in the United States. Procedia CIRP 80:530–535CrossRef Yang F, Xie Y, Deng Y, Yuan C (2019) Impacts of battery degradation on state-level energy consumption and GHG emissions from electric vehicle operation in the United States. Procedia CIRP 80:530–535CrossRef
Metadaten
Titel
Quantification of the environmental and economic benefits of the electrification of lawn mowers on the US residential market
verfasst von
Michael Saidani
Harrison Kim
Publikationsdatum
27.04.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 6/2021
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-021-01917-x

Weitere Artikel der Ausgabe 6/2021

The International Journal of Life Cycle Assessment 6/2021 Zur Ausgabe